首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have considered a five-dimensional action, which is composed of a gravitational sector and a sector of matter, where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action and where the matter sector is given by the so-called perfect fluid with barotropic EoS and new holographic dark energy. We will study the dynamic formulation of Chern-Simons gravity, where the coupling constant is promoted to a scalar field with potential. We have studied the implications of replacing the Einstein-Hilbert action by the Chern-Simons action on the cosmological evolution for a 5D FRW metric. The deceleration parameter shows that our considered model cannot cross the phantom divide. Also the natures of the cosmography parameters are examined in Chern-Simons gravity.  相似文献   

2.
It is well known that Einstein gravity is non-renormalizable; however a generalized approach is proposed that leads to Einstein gravity after renormalization. This then implies that at least one candidate for quantum gravity treats all matter on an equal footing with regard to the gravitational behaviour. Harsh constraints are also placed on any anti-matter gravity theory if one does not wish to violate the conservation of energy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We consider the problem of finding a dual formulation of gravity in the presence of non-trivial matter couplings. In the absence of matter a dual graviton can be introduced only for linearised gravitational interactions. We show that the coupling of linearised gravity to matter poses obstructions to the usual construction and comment on possible resolutions of this difficulty.  相似文献   

4.
An obvious criterion to classify theories of modified gravity is to identify their gravitational degrees of freedom and their coupling to the metric and the matter sector. Using this simple idea, we show that any theory which depends on the curvature invariants is equivalent to general relativity in the presence of new fields that are gravitationally coupled to the energy-momentum tensor. We show that they can be shifted into a new energy-momentum tensor. There is no a priori reason to identify these new fields as gravitational degrees of freedom or matter fields. This leads to an equivalence between dark matter particles gravitationally coupled to the standard model fields and modified gravity theories designed to account for the dark matter phenomenon. Due to this ambiguity, it is impossible to differentiate experimentally between these theories and any attempt of doing so should be classified as a mere interpretation of the same phenomenon.  相似文献   

5.
In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.  相似文献   

6.
《Nuclear Physics B》2005,715(3):695-712
We study quantisation of noncommutative gravity theories in two dimensions (with noncommutativity defined by the Moyal star product). We show that in the case of noncommutative Jackiw–Teitelboim gravity the path integral over gravitational degrees of freedom can be performed exactly even in the presence of a matter field. In the matter sector, we study possible choices of the operators describing quantum fluctuations and define their basic properties (e.g., the Lichnerowicz formula). Then we evaluate two leading terms in the heat kernel expansion, calculate the conformal anomaly and the Polyakov action (as an expansion in the conformal field).  相似文献   

7.
We revisit the construction of the gravitational functional renormalization group equation tailored to the Arnowitt–Deser–Misner formulation emphasizing its connection to the covariant formulation. The results obtained from projecting the renormalization group flow onto the Einstein–Hilbert action are reviewed in detail and we provide a novel example illustrating how the formalism may be connected to the causal dynamical triangulations approach to quantum gravity.  相似文献   

8.
We study the spontaneous symmetry breaking in a conformally invariant gravitational theory. We particularly emphasize on the nonminimal coupling of matter fields to gravity. By the nonminimal coupling we consider a local distinction between the conformal frames of metric of matter fieldsand the metric explicitly entering the vacuum sector. We suppose that these two frames are conformally related by a dilaton field. We show that the imposition of a condition on the variable mass term of a scalar field may lead to the spontaneous symmetry breaking. In this way the scalar field may imitate the Higgs field behavior. Attributing a constant configuration to the ground state of the Higgs field, a Higgs conformal frame is specified. We define the Higgs conformal frame as a cosmological frame which describes the large scale characteristics of the observed universe. In the cosmological frame the gravitational coupling acquires a correct value and one no longer deals with the vacuum energy problem. We then study a more general case by considering a variable configuration for the ground state of Higgs field. In this case we introduce a cosmological solution of themodel.  相似文献   

9.
We extend the Born–Oppenheimer type of approximation scheme for the Wheeler–DeWitt equation of canonical quantum gravity to arbitrary orders in the inverse Planck mass squared. We discuss in detail the origin of unitarity violation in this scheme and show that unitarity can be restored by an appropriate modification which requires back reaction from matter onto the gravitational sector. In our analysis, we heavily rely on the gauge aspects of the standard Born–Oppenheimer scheme in molecular physics.  相似文献   

10.
We study the behaviour of Yang–Mills theory under the inclusion of gravity. In the weak-gravity limit, the running gauge coupling receives no contribution from the gravitational sector, if all symmetries are preserved. This holds true with and without cosmological constant. We also show that asymptotic freedom persists in general field-theory-based gravity scenarios including gravitational shielding as well as asymptotically safe gravity.  相似文献   

11.
We study the gravitational perturbations in Einstein aether black hole spacetime and find that the quasinormal modes(QNMs) of the first kind of aether black hole are similar to that of a Lorentz violation(LV) model,the quantum electrodynamics(QED) extension limit of standard model extension. These similarities between completely different backgrounds may imply that LV in the gravity sector and LV in the matter sector have some connections: damping QNMs more rapidly and prolonging its oscillation period. Compared to the Schwarzschild case, the first kind of black holes have larger damping rates and the second ones have lower damping rates, and they all have smaller real oscillation frequency. These differences could be detected by the new generation of gravitational antennas.  相似文献   

12.
We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. In our approach quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.  相似文献   

13.
We use functional renormalization group methods to study gravity minimally coupled to a free scalar field. This setup provides the prototype of a gravitational theory which is perturbatively non-renormalizable at one-loop level, but may possess a non-trivial renormalization group fixed point controlling its UV behavior. We show that such a fixed point indeed exists within the truncations considered, lending strong support to the conjectured asymptotic safety of the theory. In particular, we demonstrate that the counterterms responsible for its perturbative non-renormalizability have no qualitative effect on this feature.  相似文献   

14.
We review some recent developments in the conformal gravity theory that has been advanced as a candidate alternative to standard Einstein gravity. As a quantum theory the conformal theory is both renormalizable and unitary, with unitarity being obtained because the theory is a PT symmetric rather than a Hermitian theory. We show that in the theory there can be no a priori classical curvature, with all curvature having to result from quantization. In the conformal theory gravity requires no independent quantization of its own, with it being quantized solely by virtue of its being coupled to a quantized matter source. Moreover, because it is this very coupling that fixes the strength of the gravitational field commutators, the gravity sector zero-point energy density and pressure fluctuations are then able to identically cancel the zero-point fluctuations associated with the matter sector. In addition, we show that when the conformal symmetry is spontaneously broken, the zero-point structure automatically readjusts so as to identically cancel the cosmological constant term that dynamical mass generation induces. We show that the macroscopic classical theory that results from the quantum conformal theory incorporates global physics effects that provide for a detailed accounting of a comprehensive set of 138 galactic rotation curves with no adjustable parameters other than the galactic mass to light ratios, and with the need for no dark matter whatsoever. With these global effects eliminating the need for dark matter, we see that invoking dark matter in galaxies could potentially be nothing more than an attempt to describe global physics effects in purely local galactic terms. Finally, we review some recent work by ’t Hooft in which a connection between conformal gravity and Einstein gravity has been found.  相似文献   

15.
《Nuclear Physics B》1995,449(3):569-586
After giving a pedagogical review of the chiral gauge approach to 2D gravity, with particular emphasis on the derivation of the gravitational Ward identities, we discuss in some detail the interpretation of matter correlation functions coupled to gravity in chiral gauge. We argue that in chiral gauge no explicit gravitational dressing factor, analogue to the Lionville exponential in conformal gauge, is necessary for left-right symmetric matter operators. In particular, we examine the gravitationally dressed four-point correlation function of products of left and right fermions. We solve the corresponding gravitational Ward identity exactly: in the presence of gravity this four-point function exhibits a logarithmic short-distance singularity, instead of the power-law singularity in the absence of gravity. This rather surprising effect is non-perturbative in the gravitational coupling and is a sign for logarithms in the gravitationally dressed operator product expansions. We also discuss some perturbative evidence that the chiral Gross-Neveu model may remain integrable when coupled to gravity.  相似文献   

16.
Brane worlds are theories with extra spatial dimensions in which ordinary matter is localized on a (3+1) dimensional submanifold. Such theories could have interesting consequences for particle physics and gravitational physics. In this essay we concentrate on the cosmological constant (CC) problem in the context of brane worlds. We show how extra-dimensional scenarios may violate Lorentz invariance in the gravity sector of the effective 4D theory, while particle physics remains unaffected. In such theories the usual no-go theorems for adjustment of the CC do not apply, and we indicate a possible explanation of the smallness of the CC. Lorentz violating effects would manifest themselves in gravitational waves travelling with a speed different from light, which can be searched for in gravitational wave experiments.  相似文献   

17.
The equivalence of inertial and gravitational masses is a defining feature of general relativity. Here, we clarify the status of the equivalence principle for interactions mediated by a universally coupled scalar, motivated partly by recent attempts to modify gravity at cosmological distances. Although a universal scalar-matter coupling is not mandatory, once postulated, it is stable against classical and quantum renormalizations in the matter sector. The coupling strength itself is subject to renormalization, of course. The scalar equivalence principle is violated only for objects for which either the graviton self-interaction or the scalar self-interaction is important--the first applies to black holes, while the second type of violation is avoided if the scalar is Galilean symmetric.  相似文献   

18.
We apply the Effective Field Theory approach to General Relativity, introduced by Goldberger and Rothstein, to study point-like and string-like sources in the context of scalar-tensor theories of gravity. Within this framework we compute the classical energy-momentum tensor renormalization to first Post-Newtonian order or, in the case of extra scalar fields, up to first order in the (non-derivative) trilinear interaction terms: this allows to write down the corrections to the standard (Newtonian) gravitational potential and to the extra-scalar potential. In the case of one-dimensional extended sources we give an alternative derivation of the renormalization of the string tension enabling a re-analysis of the discrepancy between the results obtained by Dabholkar and Harvey in one paper and by Buonanno and Damour in another, already discussed in the latter.  相似文献   

19.
We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.  相似文献   

20.
We consider the Wheeler–DeWitt equation as a device for finding eigenvalues of a Sturm–Liouville problem. In particular, we will focus our attention on the electric (magnetic) Maxwell charge. In this context, we interpret the Maxwell charge as an eigenvalue of the Wheeler–De Witt equation generated by the gravitational field fluctuations. A variational approach with Gaussian trial wave functionals is used as a method to study the existence of such an eigenvalue. We restrict the analysis to the graviton sector of the perturbation. We approximate the equation to one loop in a Schwarzschild background and a zeta function regularization is involved to handle with divergences. The regularization is closely related to the subtraction procedure appearing in the computation of Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号