首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The spin configuration of the ground state of a two-dimensional electron system is investigated for different FQHE states from an analysis of circular polarization of time-resolved luminescence. The method clearly distinguishes between fully spin polarized, partially spin polarized and spin unpolarized FQHE ground states. We demonstrate that FQHE states which are spin unpolarized or partially polarized at low magnetic fields become fully spin polarized at high fields. Temperature dependence of the spin polarization reveals a nonmonotonic behavior at . At and the electron system is found to be fully spin polarized. This result does not indicate the existence of any skyrmionic excitations in high magnetic field limit. However, at the observed spin depolarization of electron system at and becomes broader for lower magnetic fields, so that full spin polarization remains only in a small vicinity of . Such a behavior could be considered as a precursor of skirmionic depolarization, which would dominate for smaller ratios between Zeeman and Coulomb energies.We demonstrate that the spin polarization of 2D-electron system at and can be strongly affected by hyperfine interaction between electrons and optically spin-oriented nuclears. This result is due to the fact that hyperfine interaction can both enhance and suppress effective Zeeman splitting in fixed external magnetic field.  相似文献   

2.
We analyze the photoluminescence of a nonequilibrium polariton condensate in cylindrical micropillars etched on the surface of a high-Q GaAs microcavity in a wide range of detunings in a magnetic field up to 12 T for various levels of nonresonant laser pumping by nanosecond pulses. With such a method of excitation, a considerable effect of the interaction of the reservoir of photoexcited excitons with the condensate on the Zeeman splitting of the polariton condensate levels can be expected, which can lead to a decrease in its value and even to sign reversal. However, the measurements of photoluminescence in a wide range of optical excitation densities show that Zeeman splitting weakly depends on the optical pumping (its variation does not exceed 15% of the splitting in a field of 12 T). The estimation of the exciton density in the reservoir based on these data gives a value lower than 108 cm–2. In addition, a noticeable decrease (by a factor of about 1.8) in the polariton condensation threshold in a magnetic field is detected.  相似文献   

3.
Zeeman mixing of singlet and triplet 2P states of positronium (Ps) atoms, followed by decay back to the ground state, can effectively turn a long-lived triplet atom into a short-lived singlet state, which would seem to preclude laser cooling of Ps in a magnetic field. Here we report experiments which show that, in fact, because of the large splitting of the n=2 states in a high magnetic field (the Paschen-Back regime), the amount of such mixing diminishes approximately exponentially with an increasing magnetic field >0.01 T and is essentially eliminated above ~2 T. Thus, laser cooling of Ps should be feasible at high fields, which will facilitate the production of a Ps Bose-Einstein condensate.  相似文献   

4.
We analyse the polarization of spinor polariton condensates and corresponding dispersions of elementary excitations. We have considered the effects of magnetic field induced splitting in circular polarizations and residual splitting in linear polarizations in the ground state provided by the cavity asymmetry. We show that anisotropic polariton–polariton interactions fully compensate the Zeeman splitting in circular polarizations below the critical magnetic field, thus leading to the spin-Meissner effect for the polariton condensates. We also analyzed the effect of polariton–polariton interactions on the stability of the gap in linear polarizations characteristic for anisotropic microcavities. It was shown that in realistic systems this gap increases with concentration of the particles, thus contributing to the stability of the pinning of linear polarization of photoemission in semiconductor microcavities for pump intensities above the stimulation threshold.  相似文献   

5.
Bose-Einstein condensation of magnons in superfluid 3He-B is experimentally manifested by various states where coherent spin precession is established spontaneously, even in nonhomogeneous magnetic fields. Once such a condensate with coherent spin precession is created, it occupies the state with minimal energy, the ground state. The application of an additional magnetic field to that condensate may cause its deflection from the energy minimum and the condensate responds by creating collective gapless oscillations known as Goldstone modes. This Letter reports the experimental observation of a new (non-)Goldstone mode, which can be viewed as an additional NMR mode of condensed magnons in a rotating frame of reference.  相似文献   

6.
Optical pumping experiments onF-centres in potassium halides are described. The ground state polarization of the electronic spins achieved by optical pumping of isolatedF-centres is strongly dependent on the magnetic field and the wave-length of the pumping light. Experimentally it does not show the simple relationship to the magnetic circular dichroism (MCD) that has generally been assumed. A closer theoretical analysis shows indeed that the phenomena depend critically on the kind of spin mixing that prevails in the pumping cycle.If spin orbit coupling in the absorption band is the dominant spin mixing mechanism the sign of the pumping effect will be the same everywhere in the absorption band, if some other mechanism like spin mixing by radiationless transitions or hyperfine coupling to the surrounding nuclear spins prevails, the sign will follow the MCD. In strong magnetic fields experiments argue in favour of the first alternative, in low fields spin mixing by hyperfine coupling becomes important. On this basis the mechanism of optical pumping ofF-centres is discussed, and rate equations are given.  相似文献   

7.
通过分析不同温度下HgMnTe磁性二维电子气Shubnikov-de Hass(SdH)振荡的拍频现象,研究了量子阱中电子自旋 轨道相互作用和spd交换相互作用.结果表明:(1)在零磁场下,电子的自旋 轨道相互作用导致电子发生零场自旋分裂;(2)在弱磁场下,电子的自旋-轨道相互作用占主导地位,并受Landau分裂和Zeeman分裂的影响,电子的自旋分裂随磁场增加而减小;(3)在高磁场下,电子的spd交换相互作用达到饱和,电子的自旋分裂主要表现为Zeeman分裂.实验证明了当电子的Zeeman分裂能量与零场 关键词: 磁性二维电子气 Zeeman分裂 Rashba自旋分裂  相似文献   

8.
Odeurs  Jos  Hoy  Gilbert R. 《Hyperfine Interactions》1999,120(1-8):175-179

We have applied the “dressed” state concept, developed in quantum electronics, to the situation in which spin 1/2 ground-state nuclear levels are coupled by rf photons. In particular, we have studied Mössbauer spectroscopy when there is Zeeman splitting of the nuclear levels and a further interaction due to an applied rf-radiation field when the rf frequency is in the neighborhood of the ground-state splitting. The dressed-state approach treats the coupling of the ground nuclear Zeeman levels, due to a radio frequency field, by considering the total system made up of: nucleus, static magnetic field, and rf field as one global quantum system. The energy levels and corresponding eigenstates of the system are calculated as a function of the rf frequency and the magnitude of the rf magnetic flux density. Mössbauer spectra are calculated for the 57Fe case in which the source is subjected to both the static and radiation fields while the absorber nuclear levels are unsplit.

  相似文献   

9.
10.
The s-exciton spectrum of cubic ZnSe has been studied in magnetic fields up to 9T. The Zeeman splittings and diamagnetic shifts together with the energies of the 1s-, 2s-, 3s-states in zero field yield information about the valence band parameters. The spin coupling scheme of the 1s-state is discussed by means of the experimentally determined longitudinal-transverse splitting and exchange interaction.  相似文献   

11.
The possibility of magnetic field control of the spectral and polarization characteristics of exciton recombination is examined in Cd(Mg, Mn) Te-based asymmetric double quantum wells. At low fields, the exciton transition in a semimagnetic well is higher in energy than that in a nonmagnetic well and the interwell exciton relaxation is fast. In contrast, when the energy order of the exciton transitions reverses at high fields, unexpectedly slow relaxation of σ polarized excitons from the nonmagnetic well to the σ+-polarized ground state in the semimagnetic well is observed. Strong dependence of the total circular polarization degree on the heavy-light hole splitting Δ hh-lh in the nonmagnetic well is found and attributed to the spin dependent interwell tunneling controlled by exciton spin relaxation. Such a slowing down of the relaxation allows separation of oppositely spin-polarized excitons in adjacent wells. The text was submitted by the authors in English.  相似文献   

12.
在超冷费米系统中实现人造规范势的突破,吸引了许多新问题的研究,展现了许多新奇的物理现象.本文研究了在环阱中,具有自旋轨道耦合和塞曼作用的两体相互作用费米模型.通过平面波展开的方法,解析求解了两体费米系统的本征能态.系统的总动量为守恒量,可以在不同总动量空间中研究能谱.研究发现:随着塞曼相互作用增大,在不同总动量空间,两体费米系统的本征能量均逐渐降低,系统基态从总动量为零空间转变到有限值空间.从吸引到排斥相互作用,无塞曼相互作用时,基态总动量始终为零,有塞曼相互作用时,基态总动量从零转变为有限值.通过单粒子和基态动量分布研究,本文直观地揭示了由塞曼能级劈裂引起的基态转变.  相似文献   

13.
We studied spin states of CdSe quantum dots (QDs) coupled with CdMnSe QDs by probing circular polarization of photoluminescence spectrum under external magnetic fields. The bandgap energies of CdSe and CdMnSe QDs are close to each other and photoluminescence mainly originates from CdSe QDs due to relatively low radiation efficiency of CdMnSe QDs. The photoluminescence lifetime as well as its intensity was decreased with increasing magnetic field, which was ascribed to the increase in the ground state wavefunctions in CdMnSe QDs. The decrease was more pronounced for spin down electrons, which was explained by the difference in spin up and down wave functions under magnetic fields. Our results show that the spin state of CdSe QDs can be manipulated by coupling with CdMnSe QDs.  相似文献   

14.
Yi-Ming Liu 《中国物理 B》2022,31(5):57201-057201
New characteristics of the Kondo effect, arising from spin chirality induced by the Berry phase in the equilibrium state, are investigated. The analysis is based on the hierarchical equations of motion (HEOM) approach in a triangular triple quantum-dot (TTQD) structure. In the absence of magnetic field, TTQD has four-fold degenerate chiral ground states with degenerate spin chirality. When a perpendicular magnetic field is applied, the chiral interaction is induced by the magnetic flux threading through TTQD and the four-fold degenerate states split into two chiral state pairs. The chiral excited states manifest as chiral splitting of the Kondo peak in the spectral function. The theoretical analysis is confirmed by the numerical computations. Furthermore, under a Zeeman magnetic field B, the chiral Kondo peak splits into four peaks, owing to the splitting of spin freedom. The influence of spin chirality on the Kondo effect signifies an important role of the phase factor. This work provides insight into the quantum transport of strongly correlated electronic systems.  相似文献   

15.
The degree of circular polarization of the free-exciton luminescence line has been measured in GaSe excited by circularly polarized light at 4.2 K under longitudinal magnetic field. The result shows that the spin relaxation time of exciton is field-dependent but the spin memory before reaching the exciton ground state is almost unaffected by the applied longitudinal magnetic field.  相似文献   

16.
The population ratio of Zeeman sublevels of atoms on the surface of superfluid helium droplets (T=0.37 K) has been measured. Laser induced fluorescence spectra of K atoms are measured in the presence of a moderately strong magnetic field (2.9 kG). The relative difference between the two states of circular polarization of the exciting laser is used to determine the electron spin polarization of the ensemble. Equal fluorescence levels indicate that the two spin sublevels of the ground-state K atom are equipopulated, within 1%. Thermalization to 0.37 K would give a population ratio of 0.35. We deduce that the rate of spin relaxation induced by the droplet must be <520/s. For the K2 triplet dimer we find instead full thermalization of the spin.  相似文献   

17.
Ho TL  Yip SK 《Physical review letters》2000,84(18):4031-4034
We show that the ground state of a spin-1 Bose gas with an antiferromagnetic interaction is a fragmented condensate in uniform magnetic fields. The number fluctuations in each spin component change rapidly from being enormous (order N) to exceedingly small (order 1) as the magnetization of the system increases. A fragmented condensate can be turned into a single condensate state by magnetic field gradients. The conditions for existence and method of detecting fragmented states are presented.  相似文献   

18.
We present a systematic theoretical study, based on the Kane–Weiler 8×8 k·p model, of the linear Zeeman splitting introduced by the interaction between the angular momentum and the magnetic field which can give a measure of the non-linear Zeeman effect associated with interband coupling and diamagnetic contributions. The conduction and valence bands g-factors are calculated for InSb spherical and semi-spherical quantum dots. The calculations of the g-factors showed an almost linear dependence, for the ground state, on the magnetic field. We have also found that the strong magnetic field dependence as well as the dependence on the dot size of the effective spin splitting can be unambiguously attributed to the strength of the inter-level mixing.  相似文献   

19.
We have studied the Zeeman splitting in ballistic hole quantum wires formed in a (311)A quantum well by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is oriented perpendicular to the wire, no spin splitting is discernible up to B = 8.8 T. The observed large Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum confinement for spin splitting in nanostructures with strong spin-orbit coupling.  相似文献   

20.
《Physics letters. A》1988,132(5):259-261
The relativistic two-body problem in a constant magnetic field B of arbitrary strenght is elaborated. A new spin operator quadratic in B is derived and a change of sign in a relativistic Zeeman correction is pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号