首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs’ chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality. This review summarizes the methodology for fabricating ultrasensitive and selective Zn-MOF-based sensors, as well as their application in early cancer diagnosis and therapy. This review also offers a systematic approach to understanding the development of MOFs as efficient drug carriers and provides new insights on their applications and limitations in utility with possible solutions.  相似文献   

2.
手性多孔有机骨架材料(Chiral porous organic frameworks,CPOFs)具有孔性质优异、比表面积高、稳定性好以及易功能化等诸多优点,已经在手性催化、识别和分离等领域中得到应用。手性多孔有机骨架材料主要有手性金属-有机骨架材料(Chiral metal-organic frameworks,CMOFs)和手性共价有机骨架材料(Chiral covalent organic frameworks,CCOFs)及其他材料,这类材料具有特殊的手性识别、吸附作用,在色谱分离分析领域中已成为研究热点之一。该文综述了手性多孔材料的合成及其在色谱分离和选择性吸附中的应用,展望了未来CPOFs材料可能的应用与发展方向。  相似文献   

3.
Multienzyme biocatalytic cascade systems (MBCS) have attracted widespread research in the field of biosensing due to selective substrate transformations and signal amplification function. However, the poor stability of enzymes significantly restricts their effectiveness in practical applications. The spatial organization of MBCS within porous organic frameworks (POFs), such as metal–organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks, is regarded as a promising strategy to overcome these challenges. This advanced biotechnology sets up a POFs microenvironment for enzymes immobilization, and thus make it possible to shield the enzyme from the external stimulus by POFs-guided structural confinement. Simultaneously, the tailorable porous structure of POFs shell allows for the selective transport of substrates into interior enzymes, thereby accelerating the sensing process. Herein, we present the concept of this POFs-confined MBCS, wherein enzymes were completely encapsulated into, rather than adsorption onto, the POFs. We highlight the new strategies for MBCS spatial organization through rational POFs support, and describe how this new bio-nanosystem that integrates framework and enzymes functions can be designed as a versatile biosensing platform. In addition, the challenges and outlooks are also discussed.  相似文献   

4.
The synthesis of open-fiamework metal phosphates has been a subject of intense research owing to their interesting structural chemistry and potential applications as ionexchangers, catalysts and adsorbents. A large number of these materials are synthesized in the presence of organic amines as structure-directing agents. Recently, many research activities have focused on the synthesis of inorganic-organic hybrid frameworks. As compared with inorganic ligands, the advantage of using organic multidentate ligands is the efficacy of rational design of crystalline solids through their coordinating propensities and geometries.  相似文献   

5.
The field of medicinal inorganic chemistry is rapidly advancing. In particular organometallic complexes have much potential as therapeutic and diagnostic agents. The carbon‐bound and other ligands allow the thermodynamic and kinetic reactivity of the metal ion to be controlled and also provide a scaffold for functionalization. The establishment of structure–activity relationships and elucidation of the speciation of complexes under conditions relevant to drug testing and formulation are crucial for the further development of promising medicinal applications of organometallic complexes. Specific examples involving the design of ruthenium and osmium arene complexes as anticancer agents are discussed.  相似文献   

6.
Electrical conduction is well understood in materials formed from inorganic or organic building blocks, but their combination to produce conductive hybrid frameworks and networks is an emerging and rapidly developing field of research. Self-assembling organic-inorganic compounds offer immense potential for functionalising material properties for a wide scope of applications including solar cells, light emitters, gas sensors and bipolar transparent conductors. The flexibility of combining two distinct material classes into a single solid-state system provides an almost infinite number of chemical and structural possibilities; however, there is currently no systematic approach established for designing new compositions and configurations with targeted electronic or optical properties. We review the current status in the field, in particular, the range of hybrid systems reported to date and the important role of materials modelling in the field. From theoretical arguments, the Mott insulator-to-metal transition should be possible in semiconducting metal-organic frameworks, but has yet to be observed. The question remains as to whether electro-active hybrid materials will evolve from chemical curiosities towards practical applications in the near term.  相似文献   

7.
Fabrication of zeolite-like metal–organic frameworks (ZMOFs) for advanced applications, such as enzyme immobilization, is of great interest but is a great synthetic challenge. Herein, we have developed a new strategy using proteins as structure-directed agents to direct the formation of new ZMOFs that can act as versatile platforms for the in situ encapsulation of proteins under ambient conditions. Notably, protein incorporation directs the formation of a ZMOF with a sodalite ( sod ) topology instead of a non-porous diamondoid ( dia ) topology under analogous synthetic conditions. Histidines in proteins play a crucial role in the observed templating effect. Modulating histidine content thereby influenced the resultant MOF product (from dia to dia + sod mixture and, ultimately, to sod MOF). Moreover, the resulting ZMOF-incorporated proteins preserved their activity even after exposure to high temperatures and organic solvents, demonstrating their potential for biocatalysis and biopharmaceutical applications.  相似文献   

8.
Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure‐directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure‐silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks.  相似文献   

9.
Electroactive organic molecules have received a lot of attention in the field of electronics because of their fascinating electronic properties, easy functionalization and potential low cost towards their implementation in electronic devices. In recent years, electroactive organic molecules have also emerged as promising building blocks for the design and construction of crystalline porous frameworks such as metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs) for applications in electronics. Such porous materials present certain additional advantages such as, for example, an immense structural and functional versatility, combination of porosity with multiple electronic properties and the possibility of tuning their physical properties by post-synthetic modifications. In this Review, we summarize the main electroactive organic building blocks used in the past few years for the design and construction of functional porous materials (MOFs and COFs) for electronics with special emphasis on their electronic structure and function relationships. The different building blocks have been classified based on the electronic nature and main function of the resulting porous frameworks. The design and synthesis of novel electroactive organic molecules is encouraged towards the construction of functional porous frameworks exhibiting new functions and applications in electronics.  相似文献   

10.
Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure‐directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure‐silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks.  相似文献   

11.
The field of medical ultrasound has undergone a significant evolution since the development of microbubbles as contrast agents. However, because of their size, microbubbles remain in the vasculature and therefore have limited clinical applications. Building a better—and smaller—bubble can expand the applications of contrast-enhanced ultrasound by allowing bubbles to extravasate from blood vessels—creating new opportunities. In this review, we summarize recent research on the formulation and use of nanobubbles (NBs) as imaging agents and as therapeutic vehicles. We discuss the ongoing debates in the field and reluctance to accepting NBs as an acoustically active construct and a potentially impactful clinical tool that can help shape the future of medical ultrasound. We hope that the overview of key experimental and theoretical findings in the NB field presented in this article provides a fundamental framework that will help clarify NB–ultrasound interactions and inspire engagement in the field.  相似文献   

12.
An enzyme formulation using customized enzyme activators (metal ions) to directly construct metal–organic frameworks (MOFs) as enzyme protective carriers is presented. These MOF carriers can also serve as the disintegrating agents to simultaneously release enzymes and their activators during biocatalysis with boosted activities. This highly efficient enzyme preparation combines enzyme immobilization (enhanced stability, easy operation) and homogeneous biocatalysis (fast diffusion, high activity). The MOF serves as an ion pump that continuously provides metal ion activators that greatly promote the enzymatic activities (up to 251 %). This MOF–enzyme composite demonstrated an excellent protective effect against various perturbation environments. A mechanistic investigation revealed that the spontaneous activator/enzyme release and ion pumping enable enzymes to sufficiently interact with their activators owing to the proximity effects, leading to a boost in biocatalytic performance.  相似文献   

13.
Using 1,4-Benzenedicarboxylic acid (H2BDC) as the ligand, a kind of copper-based metal-organic frameworks (MOFs) were prepared and characterized using transmission electron microscopy, scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. After that, the prepared Cu-BDC frameworks were used to modify the carbon paste electrode, constructing a novel electrochemical sensor for estradiol (E2). The prepared Cu-BDC frameworks are much more active for the oxidation of E2, and greatly increase the oxidation signals of E2. The results from chronocoulometry indicate that the Cu-BDC frameworks modified electrode exhibit much higher accumulation efficiency toward E2. Based on the signal amplification strategy of Cu-BDC frameworks, a sensitive and rapid electrochemical method was developed for the determination of E2. The linear range was from 5.00 to 650.0 nM, and the detection limit was as low as 3.80 nM. It was used in different water samples, and the values of recovery were over the range from 96.5 to 101%. The practical applications reveal that this new sensing system is accurate and convenient, and has great potential applications in the environmental monitoring.  相似文献   

14.
Fabrication of zeolite‐like metal–organic frameworks (ZMOFs) for advanced applications, such as enzyme immobilization, is of great interest but is a great synthetic challenge. Herein, we have developed a new strategy using proteins as structure‐directed agents to direct the formation of new ZMOFs that can act as versatile platforms for the in situ encapsulation of proteins under ambient conditions. Notably, protein incorporation directs the formation of a ZMOF with a sodalite ( sod ) topology instead of a non‐porous diamondoid ( dia ) topology under analogous synthetic conditions. Histidines in proteins play a crucial role in the observed templating effect. Modulating histidine content thereby influenced the resultant MOF product (from dia to dia + sod mixture and, ultimately, to sod MOF). Moreover, the resulting ZMOF‐incorporated proteins preserved their activity even after exposure to high temperatures and organic solvents, demonstrating their potential for biocatalysis and biopharmaceutical applications.  相似文献   

15.
An enzyme formulation using customized enzyme activators (metal ions) to directly construct metal–organic frameworks (MOFs) as enzyme protective carriers is presented. These MOF carriers can also serve as the disintegrating agents to simultaneously release enzymes and their activators during biocatalysis with boosted activities. This highly efficient enzyme preparation combines enzyme immobilization (enhanced stability, easy operation) and homogeneous biocatalysis (fast diffusion, high activity). The MOF serves as an ion pump that continuously provides metal ion activators that greatly promote the enzymatic activities (up to 251 %). This MOF–enzyme composite demonstrated an excellent protective effect against various perturbation environments. A mechanistic investigation revealed that the spontaneous activator/enzyme release and ion pumping enable enzymes to sufficiently interact with their activators owing to the proximity effects, leading to a boost in biocatalytic performance.  相似文献   

16.
In the last two decades, the naturally occurring polysaccharides, such as chitosan and pectin, have gained great attention having potential applications in different sectors, from biomedical to new generation packaging. Currently, the chitosan and pectic have been proposed as suitable materials also for the formulation of films and coatings for cultural heritage protection, as well as packaging films. Therefore, the formulation of biopolymer films, considering only naturally occurring polymers and additives, is a current challenging trend. This work reports on the formulation of chitosan (CS), pectin (PC), and chitosan:pectin (CS:PC) films, also containing natural crosslinking and reinforcement agents, such as citric acid (CA) and halloysite nanotubes (HNT), through the solvent casting technique. The produced films are characterized through water contact angle measurements, infrared and UV–visible spectroscopy and tensile test, while the durability of the CS:PC films is evaluated subjecting the film to accelerated UVB exposure and monitoring the photo-oxidation degradation in time though infrared spectroscopy. All obtained results suggest that both crosslinking and reinforcement agents have beneficial effects on the wettability, rigidity, and photo-oxidation resistance of biopolymer films. Therefore, these biopolymer films, also containing naturally occurring additives, have good properties and performance and they are suitable as coverage films for cultural heritage protection.  相似文献   

17.
For many possible applications of metal-organic frameworks, a coating onto a metallic support capable of both superior heat and mass transfer is required. A heated substrate in contact with a chilled solution of metal salt and linker reproducibly yields polycrystalline, highly stable, thermally conductive MOF coatings at a growth rate of 50 μm h(-1), illustrated by the formation of Cu(3)(btc)(2) as an example.  相似文献   

18.
19.
Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications.  相似文献   

20.
Herein, we report a strategy for exploiting nanoscale metal–organic frameworks (nano‐MOFs) as templates for the layer‐by‐layer (LbL) assembly of polyelectrolytes. Because small‐molecule drugs or imaging agents cannot be efficiently encapsulated by polyelectrolyte nanocapsules, we investigated two promising and biocompatible polymers (comb‐shaped polyethylene glycol (PEG) and hyperbranched polyglycerol‐based PEG) for the conjugation of model drugs and imaging agents, which were then encapsulated inside the nano‐MOF‐templated nanocapsules. Furthermore, we also systemically explored the release kinetics of the encapsulated conjugates, and examined how the encapsulation and/or release processes could be controlled by varying the composition and architecture of the polymers. We envision that our nano‐MOFs‐templated nanocapsules, through combining with small‐molecule–polymer conjugates, will represent a new type of delivery system that could open up new opportunities for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号