首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The urinary metabolism of the irreversible aromatase inhibitor androsta‐1,4,6‐triene‐3,17‐dione was investigated. It is mainly excreted unchanged and as its 17β‐hydroxy analogue. For confirmation, 17β‐hydroxyandrosta‐1,4,6‐trien‐3‐one was synthesized and characterized by nuclear magnetic resonance (NMR) in addition to the parent compound. In addition, several reduced metabolites were detected in the post‐administration urines, namely 17β‐hydroxyandrosta‐1,4‐dien‐3‐one (boldenone), 17β‐hydroxy‐5β‐androst‐1‐en‐3‐one (boldenone metabolite), 17β‐hydroxyandrosta‐4,6‐dien‐3‐one, and androsta‐4,6‐diene‐3,17‐dione. The identification was performed by comparison of the metabolites with reference material utilizing gas chromatography/mass spectrometry (GC/MS) of the underivatized compounds and GC/MS and GC/tandem mass spectrometry (MS/MS) of their trimethylsilyl (TMS) derivatives. Alterations in the steroid profile were also observed, most obviously in the androsterone/testosterone ratio. Even if not explicitly listed, androsta‐1,4,6‐triene‐3,17‐dione is classified as a prohibited substance in sports by the World Anti‐Doping Agency (WADA) due to its aromatase‐inhibiting properties. In 2006 three samples from human routine sports doping control tested positive for metabolites of androsta‐1,4,6‐triene‐3,17‐dione. The samples were initially found suspicious for the boldenone metabolite 17β‐hydroxy‐5β‐androst‐1‐en‐3‐one. Since metabolites of androst‐4‐ene‐3,6,17‐trione were also present in the urine samples, it is presumed that these findings were due to the administration of a product like ‘Novedex Xtreme’, which could be easily obtained from the sport supplement market. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
(5S,9S,17S)‐17‐Hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (II), and (5R,9R,17S)‐17‐hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (III), are equimolecular products of the FeII‐induced transposition of 10β‐hydro­peroxy‐17β‐hydroxyestr‐4‐en‐3‐one, (I). With respect to reagent mol­ecules, the configuration at C9 is retained for (II) while it is inverted in (III). The conformations of the five‐ and six‐membered rings are compared.  相似文献   

3.
(3α,5α)‐3‐Hydroxy‐C‐homopregnane‐11,20‐dione ( 3 ) was prepared in eleven steps from the commercially available pregn‐4‐ene‐3,11,20‐trione ( 4 ) via the 11‐oxo‐13‐formyl‐12,13‐secopregnane intermediate 11 (Scheme 2). Subjection of this secopregnane to an intramolecular aldol condensation afforded the α,β‐unsaturated key intermediate C‐homopregn‐12‐en‐11‐one 12 .  相似文献   

4.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The classical synthesis, followed by purification of the steroidal A‐ring Δ1‐olefin, 5α‐androst‐1‐en‐17‐one ( 5 ), from the Δ1‐3‐keto enone, (5α,17β)‐3‐oxo‐5‐androst‐1‐en‐17‐yl acetate ( 1 ), through a strategy involving the reaction of Δ1‐3‐hydroxy allylic alcohol, 3β‐hydroxy‐5α‐androst‐1‐en‐17β‐yl acetate ( 2 ), with SOCl2, was revisited in order to prepare and biologically evaluate 5 as aromatase inhibitor for breast cancer treatment. Surprisingly, the followed strategy also afforded the isomeric Δ2‐olefin 6 as a by‐product, which could only be detected on the basis of NMR analysis. Optimization of the purification and detection procedures allowed us to reach 96% purity required for biological assays of compound 5 . The same synthetic strategy was applied, using the Δ4‐3‐keto enone, 3‐oxoandrost‐4‐en‐17β‐yl acetate ( 8 ), as starting material, to prepare the potent aromatase inhibitor Δ4‐olefin, androst‐4‐en‐17‐one ( 15 ). Unexpectedly, a different aromatase inhibitor, the Δ3,5‐diene, androst‐3,5‐dien‐17‐one ( 12 ), was formed. To overcome this drawback, another strategy was developed for the preparation of 15 from 8 . The data now presented show the unequal reactivity of the two steroidal A‐ring Δ1‐ and Δ4‐3‐hydroxy allylic alcohol intermediates, 3β‐hydroxy‐5α‐androst‐1‐en‐17β‐yl acetate ( 2 ) and 3β‐hydroxyandrost‐4‐en‐17β‐yl acetate ( 9 ), towards SOCl2, and provides a new strategy for the preparation of the aromatase inhibitor 12 . Additionally, a new pathway to prepare compound 15 was achieved, which avoids the formation of undesirable by‐products.  相似文献   

6.
Phytochemical investigation of the whole plant of Ligularia fischeri afforded two new sesquiterpenes 11‐hydroxy‐eremophil 1(10)‐en‐2,9‐dione (1) ; and 1β,11‐dihydroxy‐eremophil‐9‐ene (2) ; four known compounds (‐)‐4β,7α‐aromadendranediol (3) ; 1β,6α‐dihydroxyeudesm‐4(15)‐ene (4) ; Teucdiol A (5) ; Teucdiol B (6) . The new compound structures were elucidated by spectroscopic methods including 2D‐NMR techniques.  相似文献   

7.
The two double‐bond isomers 3‐iodo‐2,6,6‐trimethylbicyclo[3.1.1]hept‐2‐ene ( 6b ) and 3‐iodo‐4,6,6‐trimethylbicyclo[3.1.1]hept‐2‐ene ( 11 ) were synthesized by reacting 2,6,6‐trimethylbicyclo[3.1.1]heptan‐3‐one ( 9 ) with hydrazine, followed by treatment with I2 in the presence of Et3N. Treatment of 11 with t‐BuOK as base in diglyme at 220° resulted in the formation of 9 and 6,6‐dimethyl‐4‐methylidenebicyclo[3.1.1]hept‐2‐ene ( 12 ). For the formation of 9 , the cyclic allene 7 is proposed as an intermediate. Treatment of the second isomer, 6b , with t‐BuOK at 170° gave rise to the diene 12 and the dimerization product 17 . The underlying mechanism of this transformation is discussed. On the basis of density‐functional‐theory (DFT) calculations on the allene 7 and the alkyne 15 , the formation of the latter as the intermediate was excluded.  相似文献   

8.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

9.
Derivatives of 4‐hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto–enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H‐keto tautomer in the solid state. Recrystallization of 2‐amino‐5,6‐dimethyl‐4‐hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H‐keto tautomer, denoted form (I). Though not apparent in the X‐ray data, the IR spectrum suggests that small amounts of the 4‐hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H‐keto and the 3H‐keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one‐dimensional and three‐dimensional hydrogen‐bonding motifs, respectively.  相似文献   

10.
The 5,6,7,8,9,10‐hexahydro‐2‐methylthiopyrimido[4,5‐b]quinolines 4a , 4b , 4c , 4d , 5a , 5b , 5c , 5d and their oxidized forms 6a , 6b , 6c , 6d , 7a , 7b , 7c , 7d were obtained from the reaction of 6‐amino‐2‐(methylthio)pyrimidin‐4(3H)‐one 2 or 6‐amino‐3‐methyl‐2‐(methylthio)pyrimidin‐4(3H)‐one 3 and α,β‐unsaturated ketones 1a , 1b , 1c , 1d using BF3.OEt2 as catalyst and p‐chloranil as oxidizing agent. Some of the new compounds were evaluated in the US National Cancer Institute (NCI), where compound 5a presented remarkable activity against 46 cancer cell lines, with the most important GI50 values ranging from 0.72 to 18.4 μM from in vitro assays.  相似文献   

11.
Both (intermolecular) photocycloadditions of 2H‐1‐benzopyran‐ and 2H‐1‐benzothiopyran‐3‐carbonitriles to 2,3‐dimethylbut‐2‐ene and 2‐methylbut‐1‐en‐3‐yne, and (intramolecular) photoisomerization of 4‐(alkenyl)benzopyran‐3‐carbonitriles were investigated. In contrast to 2H‐1‐benzopyran‐3‐carbonitrile ( 1 ), its thia analog 4 reacts with 2,3‐dimethylbut‐2‐ene selectively, to afford only cyclobuta derivative 7 . In the presence of 2‐methylbut‐1‐en‐3‐yne, both 1 and 4 behave alike to afford the all‐cis‐cyclobuta diastereoisomers, 15 and 8 , respectively, as main products, as well as minor amounts of cyclobutenes 17 and 10 , respectively, which result from the addition of the terminal C‐atom of the acetylenic bond to C(3) of the heterocycle. 4‐Methyl‐2H‐1‐benzopyran‐3‐carbonitrile ( 5 ) does not undergo photoaddition to the alkene or the alkenyne mentioned above, whereas the corresponding intramolecular [2+2] photocycloaddition of 4‐(pent‐4‐enyl)benzopyran‐3‐carbonitrile ( 6b ) to tetracycle 20 proceeds quantitatively.  相似文献   

12.
Derivatives of 2‐methylidene‐1,3‐dihydropyrimidin‐4‐ones 2a , 2b , 2c , 2d , 2e , 2f , 2g were synthesized by interaction of 6‐methyl‐2‐thiouracil and 6‐phenyl‐2‐thiouracil 1a , 1b with some activated halogenides: diethyl bromomalonate, ethyl 2‐chloro‐3‐oxobutanoate, ethyl 2‐bromocyanoacetate, 2‐bromo‐5,5‐dimethylcyclohexan‐1,3‐dione, and bromomalononitrile. The boiling of 1a with ethyl 2‐bromocyanoacetate in mixture of ethanol and EtONa results in intramolecular cyclization and formation of thiazolo[3,2‐a]pyrimidin‐5‐one 3 . Interaction of 1a with 3‐chloropentane‐2,4‐dione and 2‐bromo‐1,3‐diphenylpropane‐1,3‐dione yielded corresponding S‐substituted thiopyrimidines 4a , 4b . In general, the products of 1b S‐alkylation are less prone to sulfur extrusion. Reaction of 1b with diethyl bromomalonate in the absence of EtONa stops at the S‐alkylation step, while in the presence of EtONa in ethanol or PPh3 in dioxane 2‐(ethoxycarbonylmethyl)thio‐6‐phenyl‐1,3‐dihydropyrimidin‐4(1H)‐one 6 is formed exclusively. Molecular structure and crystal structure of 2‐(1,1‐diethoxycarbonylmethyliden)‐6‐methyl‐1,3‐dihydropyrimidin‐4(1H)‐one 2a are discussed.  相似文献   

13.
The two regioisomeric 4‐diazo‐2,3,4,5‐tetrahydrofuran‐3‐ones 6 and 7 were prepared via the common intermediate 2,3,4,5‐tetrahydro‐2,2‐dimethyl‐5,5‐diphenylfuran‐3‐one ( 8 ). Diazo transfer with 2,4,6‐triisopropylbenzenesulfonyl azide yielded 6 , whereas 7 was obtained via oxidation of the monohydrazone 12 , which was prepared selectively from tetrahydrofuran‐3,4‐dione 11 . The crystal structures of 6 and 7 have been established by X‐ray crystallography.  相似文献   

14.
In the molecular structures of a series of substituted chalcones, namely (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one, C21H15FO2, (I), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐fluorophenyl)prop‐2‐en‐1‐one, C21H14F2O2, (II), (2E)‐1‐(4‐chlorophenyl)‐3‐(2‐fluoro‐4‐phenoxyphenyl)prop‐2‐en‐1‐one, C21H14ClFO2, (III), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methylphenyl)prop‐2‐en‐1‐one, C22H17FO2, (IV), and (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methoxyphenyl)prop‐2‐en‐1‐one, C22H17FO3, (V), the configuration of the keto group with respect to the olefinic double bond is scis. The molecules pack utilizing weak C—H...O and C—H...π intermolecular contacts. Identical packing motifs involving C—H...O interactions, forming both chains and dimers, along with C—H...π dimers and π–π aromatic interactions are observed in the fluoro, chloro and methyl derivatives.  相似文献   

15.
An efficient enantioselective synthesis of 3‐acetoxy transβ‐lactams 7a and 7b via [2+2] cycloaddition reactions of imines 4a and 4b , derived from a polycyclic aromatic amine and bicyclic chiral acid obtained from (+)‐car‐3‐ene, is described. The cycloaddition was found to be highly enantioselective, producing only trans‐(3R,4R)‐N‐azetidin‐2‐one in very good yields. This is the first report of the synthesis of enantiomerically pure transβ‐lactams 7a and 7b with a polycyclic aromatic substituent at N(1) of the azetidin ring.  相似文献   

16.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

17.
The use of anabolic steroids as growth promoters for meat‐producing animals is banned within the European Union. However, screening for the illegal use of natural steroid hormones still represents a difficult challenge because of the high interindividual and physiological variability of the endogenous concentration levels in animals. In this context, the development of untargeted profiling approaches for identifying new relevant biomarkers of exposure and/or effect has been emerging for a couple of years. The present study deals with an untargeted metabolomics approach on the basis of GC‐MS aiming to reveal potential biomarkers signing a fraudulent administration of 4‐androstenedione (AED), an anabolic androgenic steroid chosen as template. After a sample preparation based on microextraction by packed sorbent, urinary profiles of the free and deglucurono‐conjugates urinary metabolites were acquired by GC‐MS in the full‐scan acquisition mode. Data processing and chemometric procedures highlighted 125 ions, allowing discrimination between samples collected before and after an administration of 4‐AED. After a first evaluation of the signal robustness using additional and independent non‐compliant samples, 17 steroid‐like metabolites were pointed out as relevant candidate biomarkers. All these metabolites were then monitored using a targeted GC‐MS/MS method for an additional assessment of their capacity to be used as biomarkers. Finally, two steroids, namely 5α‐androstane‐3β,17α‐diol and 5α‐androst‐2‐en‐17‐one, were concluded to be compatible with such a definition and which could be finally usable for screening purpose of AED abuse in cattle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Oxidation of some derivatives of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐one have been investigated in detail using lead(IV) acetate in acetic acid under reflux conditions and periodic acid in aqueous ethanol at room temperature. We realized that during the first 5–15 minutes of the oxidation reactions in lead(IV) acetate/acetic acid system, 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives have been synthesized chemo selectively, while, if the reaction mixtures stirred for additional 3 hours, the main products would be 2‐(2‐(Methoxycarbonyl)‐3‐oxo‐2,3‐dihydrobenzofuran‐2‐yl)benzoic acids. Moreover, room temperature oxidation of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐ones by periodic acid (H5IO6), leads to the formation of 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives in good to excellent yields.  相似文献   

19.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

20.
The X‐ray crystal structure analyses of 3β‐hydroxy‐11‐oxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester ethanol solvate, C31H48O4·C2H6O, (I), and 3,11‐dioxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester, C31H46O4, (II), are described. These two compounds differ only in the structure of ring A. In (I), ring A has a chair conformation, while in (II), it has a twisted boat conformation. In both compounds, ring C has a slightly distorted sofa conformation, rings B, D and E are in chair conformations, and rings D and E are trans‐fused. The asymmetric unit of (I) contains one mol­ecule of ethanol linked by hydrogen bonds with two different mol­ecules of (I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号