首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

2.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

3.
The synthesis and structural characterization of two azirine rhodium(III ) complexes are described. The stabilization, N‐coordination and phenylgroup π‐stacking of the highly reactive and strained 3‐phenyl‐2H‐azirine by transition metal coordination is observed. The reaction of the dimeric complex [(η5‐C5Me5)RhCl2]2 with 3‐phenyl‐2H‐azirine (az) in CH2Cl2 at room temperature in a 1:2 molar ratio afforded the neutral mono‐azirine complex [(η5‐C5Me5)RhCl2(az)]. The subsequent reaction of [(η5‐C5Me5)RhCl2]2 with six equivalents of az and 4 equivalents of AgOTf yielded the cationic tris‐azirine complex [(η5‐C5Me5)Rh(az)3](OTf)2. After purification, all complexes have been fully characterized. The molecular structures of the novel rhodium(III ) complexes exhibit slightly distorted octahedral coordination geometries around the metal atoms.  相似文献   

4.
The reaction of monomeric [(TptBu,Me)LuMe2] (TptBu,Me=tris(3‐Me‐5‐tBu‐pyrazolyl)borate) with primary aliphatic amines H2NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(TptBu,Me)LuMe(NHR)], the solid‐state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(TptBu,Me)LnMe({μ2‐Me}AlMe3)] (Ln=Y, Ho) reacted selectively and in high yield with H2NR, according to methane elimination, to afford heterobimetallic complexes: [(TptBu,Me)Ln({μ2‐Me}AlMe2)(μ2‐NR)] (Ln=Y, Ho). X‐ray structure analyses revealed that the monomeric alkylaluminum‐supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by 1H and 13C NMR spectroscopic studies at variable temperatures and 1H–89Y HSQC NMR spectroscopy. Treatment of [(TptBu,Me)LnMe(AlMe4)] with H2NtBu gave dimethyl compounds [(TptBu,Me)LnMe2] as minor side products for the mid‐sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative‐scale amounts of complexes [(TptBu,Me)LnMe2] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(TptBu,Me)LnMe(AlMe4)] with N,N,N′,N′‐tetramethylethylenediamine (tmeda). The solid‐state structures of [(TptBu,Me)HoMe(AlMe4)] and [(TptBu,Me)HoMe2] were analyzed by XRD.  相似文献   

5.
Homoleptic tetramethylaluminate complexes [Ln(AlMe4)3] (Ln=La, Nd, Y) reacted with HCpNMe2 (CpNMe2=1‐[2‐(N,N‐dimethylamino)‐ethyl]‐2,3,4,5‐tetramethyl‐cyclopentadienyl) in pentane at ?35 °C to yield half‐sandwich rare‐earth‐metal complexes, [{C5Me4CH2CH2NMe2(AlMe3)}Ln(AlMe4)2]. Removal of the N‐donor‐coordinated trimethylaluminum group through donor displacement by using an equimolar amount of Et2O at ambient temperature only generated the methylene‐bridged complexes [{C5Me4CH2CH2NMe(μ‐CH2)AlMe3}Ln(AlMe4)] with the larger rare‐earth‐metal ions lanthanum and neodymium. X‐ray diffraction analysis revealed the formation of isostructural complexes and the C? H bond activation of one aminomethyl group. The formation of Ln(μ‐CH2)Al moieties was further corroborated by 13C and 1H‐13C HSQC NMR spectroscopy. In the case of the largest metal center, lanthanum, this C? H bond activation could be suppressed at ?35 °C, thereby leading to the isolation of [(CpNMe2)La(AlMe4)2], which contains an intramolecularly coordinated amino group. The protonolysis reaction of [Ln(AlMe4)3] (Ln=La, Nd) with the anilinyl‐substituted cyclopentadiene HCpAMe2 (CpAMe2=1‐[1‐(N,N‐dimethylanilinyl)]‐2,3,4,5‐tetramethylcyclopentadienyl) at ?35 °C generated the half‐sandwich complexes [(CpAMe2)Ln(AlMe4)2]. Heating these complexes at 75 °C resulted in the C? H bond activation of one of the anilinium methyl groups and the formation of [{C5Me4C6H4NMe(μ‐CH2)AlMe3}Ln(AlMe4)] through the elimination of methane. In contrast, the smaller yttrium metal center already gave the aminomethyl‐activated complex at ?35 °C, which is isostructural to those of lanthanum and neodymium. The performance of complexes [{C5Me4CH2CH2NMe(μ‐CH2)AlMe3}‐ Ln(AlMe4)], [(CpAMe2)Ln(AlMe4)2], and [{C5Me4C6H4NMe(μ‐CH2)AlMe3}Ln(AlMe4)] in the polymerization of isoprene was investigated upon activation with [Ph3C][B(C6F5)4], [PhNMe2H][B(C6F5)4], and B(C6F5)3. The highest stereoselectivities were observed with the lanthanum‐based pre‐catalysts, thereby producing polyisoprene with trans‐1,4 contents of up to 95.6 %. Narrow molecular‐weight distributions (Mw/Mn<1.1) and complete consumption of the monomer suggested a living‐polymerization mechanism.  相似文献   

6.
The Conjugative Bridging of Organometallic Reaction Centers in Heterodinuclear Complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)]+, M = Rh or Ir ‐ Spectroscopic Consequences of Reductive Activation Heterodinuclear complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)](PF6), M = Rh or Ir and L = 2, 5‐bis(1‐phenyliminoethyl)pyrazine (bpip), 3, 6‐bis(2‐pyridyl)‐1, 2, 4, 5‐tetrazine (bptz) or 2, 2′‐bipyrimidine (bpym), were synthesized via mononuclear rhenium compounds (L)Re(CO)3Cl. The stepwise reductive activation under chloride dissociation was studied through cyclic voltammetry and spectroelectrochemistry in the range of CO stretching vibrations (IR), charge transfer absorptions (UV/Vis) and electron spin resonance (ESR) for paramagnetic intermediates of the mono‐ and heterodinuclear compounds. While complexes of bpip and bptz form one‐electron reduced radical intermediates [(OC)3ClRe(μ‐L)MCl(C5Me5)] ˙ , the compounds with bpym react under MCl‐dissociative two‐electron reduction directly to [(OC)3ClRe(μ‐L)M(C5Me5)].  相似文献   

7.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

8.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

9.
The three-coordinate aluminum cations ligated by N-heterocyclic carbenes (NHCs) [(NHC) ⋅ AlMes2]+[B(C6F5)4] (NHC=IMeMe 4 , IiPrMe 5 , IiPr 6 , Mes=2,4,6-trimethylphenyl) were prepared via hydride abstraction of the alanes (NHC) ⋅ AlHMes2 (NHC=IMeMe 1 , IiPrMe 2 , IiPr 3 ) using [Ph3C]+[B(C6F5)4] in toluene as hydride acceptor. If this reaction was performed in diethyl ether, the corresponding four-coordinate aluminum etherate cations [(NHC) ⋅ AlMes2(OEt2)]+ [B(C6F5)4] 7 – 9 (NHC=IMeMe 7 , IiPrMe 8 , IiPr 9 ) were isolated. According to a theoretical and experimental assessment of the Lewis-acidity of the [(IMeMe) ⋅ AlMes2]+ cation is the acidity larger than that of B(C6F5)3 and of similar magnitude as reported for Al(C6F5)3. The reaction of [(IMeMe) ⋅ AlMes2]+[B(C6F5)4] 4 with the sterically less demanding, basic phosphine PMe3 afforded a mixed NHC/phosphine stabilized cation [(IMeMe) ⋅ AlMes2(PMe3)]+[B(C6F5)4] 10 . Equimolar mixtures of 4 and the sterically more demanding PCy3 gave a frustrated Lewis-pair (FLP), i.e., [(IMeMe) ⋅ AlMes2]+[B(C6F5)4]/PCy3 FLP-11 , which reacts with small molecules such as CO2, ethene, and 2-butyne.  相似文献   

10.
A Se 2 2− complex , Ph3P, and (C5Me5)2 are formed in the reduction of Se=PPh3 by the NdIII complex [(C5Me5)3Nd] [Eq. (a)]. The latter is thus reminiscent of [(C5Me5)3Sm], which, however, appears to be a stronger reductant than [(C5Me5)3Nd]. This suggests that the reductive reactivity of [(C5Me5)3Ln] complexes can be tuned by varying the size of the metal atom.  相似文献   

11.
Targeting the synthesis of rare-earth-metal pentadienyl half-sandwich tetramethylaluminate complexes, homoleptic [Ln(AlMe4)3] (Ln=Y, La, Ce, Pr, Nd, Lu) were treated with equimolar amounts of the potassium salts K(2,4-dmp) (2,4-dmp=2,4-dimethylpentadienyl), K(2,4-dipp) (2,4-dipp=2,4-diisopropylpentadienyl), and K(2,4-dtbp) (2,4-dtbp=2,4-di-tert-butylpentadienyl). The reactions involving the larger rare-earth-metal centers lanthanum, cerium, praseodymium, and neodymium gave selectively the desired half-sandwich complexes [(2,4-dmp)La(AlMe4)2], [(2,4-dipp)La(AlMe4)2], and [(2,4-dtbp)Ln(AlMe4)2] (Ln=La, Ce, Pr, Nd) in high crystalline yields. Smaller rare-earth-metal centers yielded preferentially the sandwich complexes [(2,4-dmp)2Ln(AlMe4)] (Ln=Y, Lu) and [(2,4-dipp)2Y(AlMe4)]. Activation with fluorinated borate/borane co-catalysts gave highly active catalyst systems for the fabrication of polyisoprene, displaying molecular weight distributions as low as Mw/Mn=1.09 and a maximum cis-1,4 selectivity of 90.4 %. The equimolar reaction of half-sandwich complex [(2,4-dtbp)La(AlMe4)2] with B(C6F5)3 led to the isolation and full characterization of the single-component catalyst {{(2,4-dtbp)La[(μ-Me)2AlMe(C6F5)]}[Me2Al(C6F5)2]}2. The reaction of the latter complex with 10 equivalents of isoprene could be monitored by 1H NMR spectroscopy. Also, a donor-induced aluminato/gallato exchange was achieved with [(2,4-dtbp)La(AlMe4)2] and GaMe3(OEt2) leading to [(2,4-dtbp)La(GaMe4)2].  相似文献   

12.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

13.
The reactivity of the mono(pentamethylcyclopentadienyl) divalent lanthanide tetraphenylborate complexes, (C5Me5)Ln(BPh4) (Ln = Sm, 1; Yb, 2), was investigated to determine how Ln2+ and (BPh4)1? reactivity would combine in these species. The (BPh4)1? ligand in (C5Me5)Yb(BPh4) can be displaced with KN(SiMe3)2 to form the heteroleptic divalent dimer, {(C5Me5)Yb[μ-N(SiMe3)2]}2 (3). Both 1 and 2 reduce phenazine to give the bis(pentamethylcyclopentadienyl) ligand redistribution products, [(C5Me5)2Ln]2(μ-C12H8N2). 2,2-Bipyridine is reduced by 1 to yield the ligand redistribution product, (C5Me5)2Sm(C10H8N2) (4), while 2 does not react with bipyridine. Tert-butyl chloride is reduced by 1 to form the trimetallic pentachloride complex [{(C5Me5)(THF)Sm}3(μ-Cl)5][BPh4] (6), in a reaction that appears to use the reductive capacity of both Sm2+ and (BPh4)1?.  相似文献   

14.
Two new optically active bidentate N,N‐ligands, DMIQCI ( 3a ) and DMIQCD ( 3b ), containing a quinuclidine core and an imidazolidin‐2‐imine unit, were synthesized. The reaction of these ligands with [(η5‐C5Me5)RuCl]4 afforded the brick‐red ruthenium(II) complexes [(η5‐C5Me5)Ru(DMIQCI)Cl] ( 4 ) and [(η5‐C5Me5)Ru(DMIQCD)Cl] ( 5 ), which were used as catalysts in the transfer hydrogenation of acetophenone in boiling 2‐propanol. The reactions of 3a and 3b with [(COD)PdCl2] (COD = 1,5‐cycloocta‐diene) and with [(DME)NiBr2] (DME = 1,2‐dimethoxyethane) afforded the square‐planar palladium(II) complexes [(DMIQCI)PdCl2] ( 7 ) and [(DMIQCD)PdCl2] ( 8 ) or the tetrahedral nickel(II) complexes [(DMIQCI)NiBr2] ( 9 ) and [(DMIQCD)NiBr2] ( 10 ), respectively. The X‐ray crystal structures of 4 , 7 , 9· THF, and 10 are reported.  相似文献   

15.
A series of low‐melting‐point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C2mim)3[Ln(dcnm)6] ( 1 Ln ; 1 Ln = 1 La , 1 Ce , 1 Pr , 1 Nd ), (C2C1mim)3[Pr(dcnm)6] ( 2 Pr ), (C4C1pyr)3[Ce(dcnm)6] ( 3 Ce ), (N1114)3[Ln(dcnm)6] ( 4 Ln ; 4 Ln = 4 La , 4 Ce , 4 Pr , 4 Nd , 4 Sm , 4 Gd ), and (N1112OH)3[Ce(dcnm)6] ( 5 Ce ) (C2mim=1‐ethyl‐3‐methylimidazolium, C2C1mim=1‐ethyl‐2,3‐dimethylimidazolium, C4C1py=N‐butyl‐4‐methylpyridinium, N1114=butyltrimethylammonium, N1112OH=2‐(hydroxyethyl)trimethylammonium=choline). X‐ray crystallography was used to determine the structures of complexes 1 La , 2 Pr , and 5 Ce , all of which contain [Ln(dcnm)6]3? ions. Complexes 1 Ln and 2 Pr were all ionic liquids (ILs), with complex 3 Ce melting at 38.1 °C, the lowest melting point of any known complex containing the [Ln(dcnm)6]3? trianion. The ammonium‐based cations proved to be less suitable for forming ILs, with complexes 4 Sm and 4 Gd being the only salts with the N1114 cation to have melting points below 100 °C. The choline‐containing complex 5 Ce did not melt up to 160 °C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

16.
The mixed sandwich complexes [(C8H8)Ln(C5Me4Et)(THF)x] (Ln = Y 1, La 2, Nd 3, Sm 4, Gd 5, Tm 6, Lu 7), [(C8H8)Ln{C5H2(SiMe3)3}(THF)x (Ln = Pr 8, Dy 9) and [(C8H8)Pr(C5Ph5)] (10), have been prepared by the metathetic reaction of [(C8H8)Ln(μ-Cl)-(THF)n]2 with NaC5Me4Et, LiC5H2(SiMe3)3 and NaC5Ph5 in THF. The 1:2 reaction of 7 with acetylacetone results in displacement of the (C8H8)-ligand to generate the new complex [(C5Me4Et)Ln(acac)2] (acac = [CH3C(O)CHC(O)CH3]) (11). The molecular structures of 7 (monoclinic space group P21/c with a = 990.4(5) pm, b = 1228.2(5) pm, c = 2757.5(16) pm, β = 93.92(4)°, V = 3346(3)·10−30 m3 and Z = 8) and 11 (triclinic space group P1&#x0304; with a = 957.3(3) pm, b = 1064.5(2) pm, c = 1068.3(2) pm, α = 94.19(12)°, β = 96.37(17)°, γ = 96.71(16)°, V = 1070.3(4)·10−30 m3 and Z = 2) have been determined by X-ray diffraction.  相似文献   

17.
Treatment of pyridine‐stabilized silylene complexes [(η5‐C5Me4R)(CO)2(H)W?SiH(py)(Tsi)] (R=Me, Et; py=pyridine; Tsi=C(SiMe3)3) with an N‐heterocyclic carbene MeIiPr (1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) caused deprotonation to afford anionic silylene complexes [(η5‐C5Me4R)(CO)2W?SiH(Tsi)][HMeIiPr] (R=Me ( 1‐Me ); R=Et ( 1‐Et )). Subsequent oxidation of 1‐Me and 1‐Et with pyridine‐N‐oxide (1 equiv) gave anionic η2‐silaaldehydetungsten complexes [(η5‐C5Me4R)(CO)2W{η2‐O?SiH(Tsi)}][HMeIiPr] (R=Me ( 2‐Me ); R=Et ( 2‐Et )). The formation of an unprecedented W‐Si‐O three‐membered ring was confirmed by X‐ray crystal structure analysis.  相似文献   

18.
The reaction of decamethylytterbocene [(η5‐C5Me5)2Yb(THF)2] with SO2 at low temperature gave two new compounds, namely, the YbIII dithionite/sulfinate complex [{(η5‐C5Me5)2Yb(μ3,1κ2O1,3,2κ3O2,2′,4‐S2O4)}2{(η5‐C5Me5)Yb(μ,1κO,2κO′‐C5Me5SO2)}2] ( 1 ) and the YbIII dithionite complex [{(η5‐C5Me5)2Yb}2(μ,1κ2O1,3,2κ2O2,4‐S2O4)] ( 2 ). After extraction of 1 , the mixture was heated to give the dinuclear tetrasulfinate complex [{(η5‐C5Me5)Yb}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 a ). In contrast, from the reaction of [(η5‐C5Me5)2Eu(THF)2] with SO2 only the tetrasulfinate complex [{(η5‐C5Me5)Eu}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 b ) was isolated. Two major reaction pathways were observed: 1) reductive coupling of two SO2 molecules to form the dithionite anion S2O42?; and 2) nucleophilic attack of one metallocene C5Me5 ligand on the sulfur atom of SO2. The compounds presented are the first dithionite and sulfinate complexes of the f‐elements.  相似文献   

19.
The rare‐earth‐metal? hydride complexes [{(1,7‐Me2TACD)LnH}4] (Ln=La 1 a , Y 1 b ; (1,7‐Me2TACD)H2=1,7‐dimethyl‐1,4,7,10‐tetraazacyclododecane, 1,7‐Me2[12]aneN4) were synthesized by hydrogenolysis of [{(1,7‐Me2TACD)Ln(η3‐C3H5)}2] with 1 bar H2. The tetrameric structures were confirmed by 1H NMR spectroscopy and single‐crystal X‐ray diffraction of compound 1 a . Both complexes catalyze the dehydrogenation of secondary amine? borane Me2NH ? BH3 to afford the cyclic dimer (Me2NBH2)2 and (Me2N)2BH under mild conditions. Whilst the complete conversion of Me2NH ? BH3 was observed within 2 h with lanthanum? hydride 1 a , the yttrium homologue 1 b required 48 h to reach 95 % conversion. Further reactions of compound 1 a with Me2NH ? BH3 in various stoichiometric ratios gave a series of intermediate products, [{(1,7‐Me2TACD)LaH}4](Me2NBH2)2 ( 2 a ), [(1,7‐Me2TACDH)La(Me2NBH3)2] ( 3 a ), [(1,7‐Me2TACD)(Me2NBH2)La(Me2NBH3)] ( 4 a ), and [(1,7‐Me2TACD)(Me2NBH2)2La(Me2NBH3)] ( 5 a ). Complexes 2 a , 3 a , and 5 a were isolated and characterized by multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction studies. These intermediates revealed the activation and coordination modes of “Me2NH ? BH3” fragments that were trapped within the coordination sphere of a rare‐earth‐metal center.  相似文献   

20.
Reaction mechanisms for the oxidative reactions of CO2 and COS with [(C5Me5)2Sm] have been investigated by means of DFT methods. The experimental formation of oxalate and dithiocarbonate complexes is explained. Their formation involve the samarium(III) bimetallic complexes [(C5Me5)2Sm‐CO2‐Sm(C5Me5)2] and [(C5Me5)2Sm‐COS‐Sm(C5Me5)2] as intermediates, respectively, ruling out radical coupling for the formation of the oxalate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号