首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine non-linear resonant interactions between a damped and forced dispersive linear finite rod and a lightweight essentially non-linear end attachment. We show that these interactions may lead to passive, broadband and on-way targeted energy flow from the rod to the attachment, which acts, in essence, as non-linear energy sink (NES). The transient dynamics of this system subject to shock excitation is examined numerically using a finite element (FE) formulation. Parametric studies are performed to examine the regions in parameter space where optimal (maximal) efficiency of targeted energy pumping from the rod to the NES occurs. Signal processing of the transient time series is then performed, employing energy transfer and/or exchange measures, wavelet transforms, empirical mode decomposition and Hilbert transforms. By computing intrinsic mode functions (IMFs) of the transient responses of the NES and the edge of the rod, and examining resonance captures that occur between them, we are able to identify the non-linear resonance mechanisms that govern the (strong or weak) one-way energy transfers from the rod to the NES. The present study demonstrates the efficacy of using local lightweight non-linear attachments (NESs) as passive broadband energy absorbers of unwanted disturbances in continuous elastic structures, and investigates the dynamical mechanisms that govern the resonance interactions influencing this passive non-linear energy absorption.  相似文献   

2.
We study multi-frequency transitions in the transient dynamics of a viscously damped dispersive finite rod with an essentially nonlinear end attachment. The attachment consists of a small mass connected to the rod by means of an essentially nonlinear stiffness in parallel to a viscous damper. First, the periodic orbits of the underlying hamiltonian system with no damping are computed, and depicted in a frequency–energy plot (FEP). This representation enables one to clearly distinguish between the different types of periodic motions, forming back bone curves and subharmonic tongues. Then the damped dynamics of the system is computed; the rod and attachment responses are initially analyzed by the numerical Morlet wavelet transform (WT), and then by the empirical mode decomposition (EMD) or Hilbert–Huang transform (HTT), whereby, the time series are decomposed in terms of intrinsic mode functions (IMFs) at different characteristic time scales (or, equivalently, frequency scales). Comparisons of the evolutions of the instantaneous frequencies of the IMFs to the WT spectra of the time series enables one to identify the dominant IMFs of the signals, as well as, the time scales at which the dominant dynamics evolve at different time windows of the responses; hence, it is possible to reconstruct complex transient responses as superposition of the dominant IMFs involving different time scales of the dynamical response. Moreover, by superimposing the WT spectra and the instantaneous frequencies of the IMFs to the FEPs of the underlying hamiltonian system, one is able to clearly identify the multi-scaled transitions that occur in the transient damped dynamics, and to interpret them as ‘jumps’ between different branches of periodic orbits of the underlying hamiltonian system. As a result, this work develops a physics-based, multi-scaled framework and provides the necessary computational tools for multi-scaled analysis of complex multi-frequency transitions of essentially nonlinear dynamical systems.  相似文献   

3.
Experimental verification of passive non-linear energy pumping in a two-degree-of-freedom system comprising a damped linear oscillator coupled to an essentially non-linear attachment is carried out. In the experiments presented the non-linear attachment interacts with a single linear mode and, hence, energy pumping occurs at a single ‘fast’ frequency in the neighborhood of the eigenfrequency of the linear mode. Good agreement between simulated and experimental results was observed, in spite of the strongly (essentially) non-linear and transient nature of the dynamics of the system considered. The experiments bear out earlier predictions that a significant fraction of the energy introduced directly to a linear structure by an external impulsive (broadband) load can be transferred (pumped) to an essentially non-linear attachment, and dissipated there locally without spreading back to the system. In addition, the reported experimental results confirm that (a) non-linear energy pumping in systems of coupled oscillators can occur only above a certain threshold of the input energy, and (b) there is an optimal value of the energy input at which a maximum portion of the energy is absorbed and dissipated at the NES.  相似文献   

4.
We study the dynamics of a system of coupled linear oscillators with a multi-DOF end attachment with essential (nonlinearizable) stiffness nonlinearities. We show numerically that the multi-DOF attachment can passively absorb broadband energy from the linear system in a one-way, irreversible fashion, acting in essence as nonlinear energy sink (NES). Strong passive targeted energy transfer from the linear to the nonlinear subsystem is possible over wide frequency and energy ranges. In an effort to study the dynamics of the coupled system of oscillators, we study numerically and analytically the periodic orbits of the corresponding undamped and unforced hamiltonian system with asymptotics and reduction. We prove the existence of a family of countable infinity of periodic orbits that result from combined parametric and external resonance interactions of the masses of the NES. We numerically demonstrate that the topological structure of the periodic orbits in the frequency–energy plane of the hamiltonian system greatly influences the strength of targeted energy transfer in the damped system and, to a great extent, governs the overall transient damped dynamics. This work may be regarded as a contribution towards proving the efficacy the utilizing essentially nonlinear attachments as passive broadband boundary controllers. PACS numbers: 05.45.Xt, 02.30.Hq  相似文献   

5.
We study the resonant dynamics of a two-degree-of-freedom system composed of a linear oscillator weakly coupled to a strongly non-linear one, with an essential (non-linearizable) cubic stiffness non-linearity. For the undamped system this leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic motions (non-linear normal modes—NNMs), as well as, asynchronous periodic motions (elliptic orbits—EOs). Furthermore, we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the damped dynamics gets ‘captured’ in the neighborhood of a damped NNM before ‘escaping’ and becoming an oscillation with exponentially decaying amplitude. In turn, these resonance captures may lead to passive non-linear energy pumping phenomena from the linear to the non-linear oscillator. Thus, sustained resonance capture appears to provide a dynamical mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion. Numerical integrations confirm the analytical predictions.  相似文献   

6.
The dynamics of a non-linear electro-magneto-mechanical coupled system is addressed. The non-linear behavior arises from the involved coupling quadratic non-linearities and it is explored by relying on both analytical and numerical tools. When the linear frequency of the circuit is larger than that of the mechanical oscillator, the dynamics exhibits slow and fast time scales. Therefore the mechanical oscillator forced (actuated) via harmonic voltage excitation of the electric circuit is analyzed; when the forcing frequency is close to that of the mechanical oscillator, the long term damped dynamics evolves in a purely slow timescale with no interaction with the fast time scale. We show this by assuming the existence of a slow invariant manifold (SIM), computing it analytically, and verifying its existence via numerical experiments on both full- and reduced-order systems. In specific regions of the space of forcing parameters, the SIM is a complicated geometric object as it undergoes folding giving rise to hysteresis mechanisms which create a pronounced non-linear resonance phenomenon. Eventually, the roles played by the electro-magnetic and mechanical components in the resulting complex response, encompassing bifurcations as well as possible transitions from regular to chaotic motion, are highlighted by means of Poincaré sections.  相似文献   

7.
The dynamics of a system of coupled oscillators possessing strongly nonlinear stiffness and damping is examined. The system consists of a linear oscillator coupled to a strongly nonlinear, light attachment, where the nonlinear terms of the system are realized due to geometric effects. We show that the effects of nonlinear damping are far from being purely parasitic and introduce new dynamics when compared to the corresponding systems with linear damping. The dynamics is analyzed by performing a slow/fast decomposition leading to slow flows, which in turn are used to study transient instability caused by a bifurcation to 1:3 resonance capture. In addition, a new dynamical phenomenon of continuous resonance scattering is observed that is both persistent and prevalent for the case of the nonlinearly damped system: For certain moderate excitations, the transient dynamics “tracks” a manifold of impulsive orbits, in effect transitioning between multiple resonance captures over definitive frequency and energy ranges. Eventual bifurcation to 1:3 resonance capture generates the dynamic instability, which is manifested as a sudden burst of the response of the light attachment. Such instabilities that result in strong energy transfer indicate potential for various applications of nonlinear damping such as in vibration suppression and energy harvesting.  相似文献   

8.
We study targeted energy transfers (TETs) and nonlinear modal interactions attachments occurring in the dynamics of a thin cantilever plate on an elastic foundation with strongly nonlinear lightweight attachments of different configurations in a more complicated system towards industrial applications. We examine two types of shock excitations that excite a subset of plate modes, and systematically study, nonlinear modal interactions and passive broadband targeted energy transfer phenomena occurring between the plate and the attachments. The following attachment configurations are considered: (i) a single ungrounded, strongly (essentially) nonlinear single-degree-of-freedom (SDOF) attachment—termed nonlinear energy sink (NES); (ii) a set of two SDOF NESs attached at different points of the plate; and (iii) a single multi-degree-of-freedom (MDOF) NES with multiple essential stiffness nonlinearities. We perform parametric studies by varying the parameters and locations of the NESs, in order to optimize passive TETs from the plate modes to the attachments, and we showed that the optimal position for the NES attachments are at the antinodes of the linear modes of the plate. The parametric study of the damping coefficient of the SDOF NES showed that TETs decreasing with lower values of the coefficient and moreover we showed that the threshold of maximum energy level of the system with strong TETs occured in discrete models is by far beyond the limits of the engineering design of the continua. We examine in detail the underlying dynamical mechanisms influencing TETs by means of empirical mode decomposition (EMD) in combination with wavelet transforms. This integrated approach enables us to systematically study the strong modal interactions occurring between the essentially nonlinear NESs and different plate modes, and to detect the dominant resonance captures between the plate modes and the NESs that cause the observed TETs. Moreover, we perform comparative studies of the performance of different types of NESs and of the linear tuned mass dampers (TMDs) attached to the plate instead of the NESs. Finally, the efficacy of using this type of essentially nonlinear attachments as passive absorbers of broadband vibration energy is discussed.  相似文献   

9.
A general procedure is presented for developing data-based, non-parametric models of non-linear multi-degree-of-freedom, non-conservative, dissipative systems. Two broad classes of methods are discussed: one relying on the representation of the system restoring forces in a polynomial-basis format, and the other using artificial neural networks to map the complex transformations relating the system state variables to the needed system outputs. A non-linear two-degree-of-freedom system is used to formulate the approach under discussion and to generate synthetic data for calibrating the efficiency of the two methods in capturing complex non-linear phenomena (such as dry friction, hysteresis, dead-space non-linearities, and polynomial-type non-linearities) that are widely encountered in the applied mechanics field. Subsequently, a reconfigurable test apparatus was used to generate experimental measurements from a physical non-linear “joint” involving two-dimensional motion (translation and rotation) and complicated interaction forces between the different motion axes, among its internal elements. Both the polynomial-basis approach and the neural network method were used to develop high-fidelity, non-parametric models of the physical test article. The ability of the identified models to accurately “generalize” the essential features of the non-linear system was verified by comparing the predictions of the models with experimental measurements from data sets corresponding to different excitations than those used for identification purposes. It is shown that the identification techniques under discussion can be useful tools for developing accurate simulation models of complex multi-dimensional non-linear systems under broadband excitation.  相似文献   

10.
Large amplitude, traveling wave motion of an inextensible, linearly elastic, rotating ring is analyzed. Equations governing the planar dynamics of a thin rod, curved in its undeformed state and moving in a horizontal reference frame which rotates about a fixed axis, are obtained via Hamilton's extended principle. The equations are specialized to study the behavior of a rotating circular ring and approximate solutions are obtained near resonance utilizing a perturbation analysis. Undamped free and viscously damped forced traveling wave motion is considered. The motion is found to consist of a forward and a backward traveling wave which may be coupled due to the non-linear terms present in the equations of motion  相似文献   

11.
爆破震动信号的小波分析与HHT变换   总被引:15,自引:2,他引:13  
以实测的爆破震动信号为例,分别应用小波分析和HHT(Hilbert-Huang Transform)变换从不同方面进行对比分析,讨论了爆破震动信号的特征提取和时频分布。结果表明:小波分析和HHT变换都是处理非平稳信号的两种好方法,都能很好地提取信号的主要特征信息和进行滤波、消噪。然而,小波分析存在选择小波基的困难,而HHT变换不需要预先选择基函数,其EMD(empirical mode decomposition)得到的IMF(intrinsic mode function)能反映原始信号的固有特性,通常具有实际物理意义;小波谱的能量在频率范围内分布较宽,而Hilbert能量谱能清晰地表明能量随时频的具体分布,大部分能量都集中在有限的能量谱线上;小波分析中时间、频率分辨率受Heisenberg测不准原理的限制,而HHT变换中时间分辨率不变且精度很高,其频率分辨率则可随信号内在的特性进行自适应调节。分析表明:HHT变换在分析非平稳信号时较小波分析更具适应性,在岩石中波的传播、衰减规律、结构动态响应特征和爆破震动破坏等研究中有着广阔的应用前景。  相似文献   

12.
We study the dynamic interactions between traveling waves propagating in a linear lattice and a lightweight, essentially nonlinear and damped local attachment. Correct to leading order, we reduce the dynamics to a strongly nonlinear damped oscillator forced by two harmonic terms. One of the excitation frequencies is characteristic of the traveling wave that impedes to the attachment, whereas the other accounts for local lattice dynamics. These two frequencies are energy-independent; a third energy-dependent frequency is present in the problem, characterizing the nonlinear oscillation of the attachment when forced by the traveling wave. We study this three-frequency strongly nonlinear problem through slow-fast partitions of the dynamics and resort to action-angle coordinates and Melnikov analysis. For damping below a critical threshold, we prove the existence of relaxation oscillations of the attachment; these oscillations are associated with enhanced targeted energy transfer from the traveling wave to the attachment. Moreover, in the limit of weak or no damping, we prove the existence of subharmonic oscillations of arbitrarily large periods, and of chaotic motions. The analytical results are supported by numerical simulations of the reduced order model.  相似文献   

13.
The purpose of this study is to highlight and explain the vigorous energy transfers that may take place in a linear oscillator weakly coupled to an essentially nonlinear attachment, termed a nonlinear energy sink. Although these energy exchanges are encountered during the transient dynamics of the damped system, it is shown that the dynamics can be interpreted mainly in terms of the periodic orbits of the underlying Hamiltonian system. To this end, a frequency-energy plot gathering the periodic orbits of the system is constructed which demonstrates that, thanks to a 1:1 resonance capture, energy can be irreversibly and almost completely transferred from the linear oscillator to the nonlinear attachment. Furthermore, it is observed that this nonlinear energy pumping is triggered by the excitation of transient bridging orbits compatible with the nonlinear attachment being initially at rest, a common feature in most practical applications. A parametric study of the energy exchanges is also performed to understand the influence of the parameters of the nonlinear energy sink. Finally, the results of experimental measurements supporting the theoretical developments are discussed. This study was carried out while the author was a postdoctoral fellow at the National Technical University of Athens and at the University of Illinois at Urbana-Champaign.  相似文献   

14.
We study the interaction of propagating wavetrains in a one-dimensional chain of coupled linear damped oscillators with a strongly nonlinear, lightweight, dissipative local attachment which acts, in essence, as nonlinear energy sink—NES. Both symmetric and highly un-symmetric NES configurations are considered, labelled S-NES and U-NES, respectively, with strong (in fact, non-linearizable or nearly non-linearizable) stiffness nonlinearity. Especially for the case of U-NES we show that it is capable of effectively arresting incoming slowly modulated pulses with a single fast frequency by scattering the energy of the pulse to a range of frequencies, by locally dissipating a major portion of the incoming energy, and then by backscattering residual waves upstream. As a result, the wave transmission past the location of the NES is minimized, and the NES acts, in effect, as passive wave arrestor and reflector. Analytical reduced-order modeling of the dynamics is performed through complexification/averaging. In addition, governing nonlinear dynamics is studied computationally and compared to the analytical predictions. Results from the reduced order model recover the exact computational simulations.  相似文献   

15.
We study a linearly damped preloaded two-bar linkage that exhibits hysteresis due to the presence of multiple attracting equilibria. The dynamics at the unstable equilibrium, through which a snap-through buckle occurs, are not linearizable due to a solution-dependent singularity. We stabilize the unstable equilibrium using two distinct non-linear controllers. The feedback-linearization controller requires knowledge of the linkage parameters, whereas the robust version of the intrinsic non-linear proportional-derivative controller requires only an upper bound on the stiffness.  相似文献   

16.
Integration of a nonlinear energy sink and a piezoelectric energy harvester   总被引:1,自引:0,他引:1  
A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink(NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric system is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the transient vibration, and a 1:1 transient resonance capture occurs between two subsystems.The investigation demonstrates that the integrated NES-piezoelectric mechanism can reduce vibration and harvest some vibration energy.  相似文献   

17.
We propose a wavelet method in the present study to analyze the large deflection bending and post-buckling problems of rods composed of non-linearly elastic materials, which are governed by a class of strong non-linear differential equations. This wavelet method is established based on a modified wavelet approximation of an interval bounded L2-function, which provides a new method for the large deflection bending and post-buckling problems of engineering structures. As an example, in this study, we considered the rod structures of non-linear materials that obey the Ludwick and the modified Ludwick constitutive laws. The numerical results for both large deflection bending and post-buckling problems are presented, illustrating the convergence and accuracy of the wavelet method. For the former, the wavelet solutions are more accurate than the finite element method and the shooting method embedded with the Euler method. For the latter, both bifurcation and limit loads can be easily and directly obtained by solving the extended systems. On the other hand, for the shooting method embedded with Runge–Kutta method, to obtain these values usually needs to choose a good starting value and repeat trial solutions many times, which can be a tough task.  相似文献   

18.
We study the 1:3 resonant dynamics of a two degree-of-freedom (DOF) dissipative forced strongly nonlinear system by first examining the periodic steady-state solutions of the underlying Hamiltonian system and then the forced and damped configuration. Specifically, we analyze the steady periodic responses of the two DOF system consisting of a grounded strongly nonlinear oscillator with harmonic excitation coupled to a light linear attachment under condition of 1:3 resonance. This system is particularly interesting since it possesses two basic linearized eigenfrequencies in the ratio 3:1, which, under condition of resonance, causes the localization of the fundamental and third-harmonic components of the responses of the grounded nonlinear oscillator and the light linear attachment, respectively. We examine in detail the topological structure of the periodic responses in the frequency–energy domain by computing forced frequency–energy plots (FEPs) in order to deduce the effects of the 1:3 resonance. We perform complexification/averaging analysis and develop analytical approximations for strongly nonlinear steady-state responses, which agree well with direct numerical simulations. In addition, we investigate the effect of the forcing on the 1:3 resonance phenomena and conclude our study with the stability analysis of the steady-state solutions around 1:3 internal resonance, and a discussion of the practical applications of our findings in the area of nonlinear targeted energy transfer.  相似文献   

19.
A pendulum rotating under vertical base excitation is considered from the viewpoint of energy extraction. Since the uncontrolled system can exhibit complex dynamics, we consider an added control torque and seek the optimal period-1 rotational motion for maximum energy extraction. We find, and confirm through complementary methods, that the limiting optimal motion for harmonic base excitation is piecewise-constant: there are extended dwells at the top and bottom positions with rapid transitions in between. The limiting optimal solution gives about a quarter more energy extraction than uniform rotation, in the limit of no damping. Approximating motions with finite-speed transitions can be almost as good. Base excitations other than pure sinusoids are also considered and the corresponding optima determined.  相似文献   

20.
A vibration-based bistable electromagnetic energy harvester coupled to a directly excited primary system is examined numerically. The primary goal of the study is to investigate the potential benefit of the bistable element for harvesting broadband and low-amplitude vibration energy. The considered system consists of a grounded, weakly damped, linear oscillator (LO) coupled to a light-weight, weakly damped oscillator by means of an element which provides both cubic nonlinear and negative linear stiffness components and electromechanical coupling elements. Single and repeated impulses with varying amplitude applied to the LO are the vibration energy sources considered. A thorough sensitivity analysis of the system's key parameters provides design insights for a bistable nonlinear energy harvesting (BNEH) device able to achieve robust harvesting efficiency. This is achieved through the exploitation of three BNEH main dynamical regimes; namely, periodic cross-well, aperiodic (chaotic) cross-well, and in-well oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号