首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This papers examines structural properties of the recently developed shearlet coorbit spaces in higher dimensions. We prove embedding theorems for subspaces of shearlet coorbit spaces resembling shearlets on the cone in three dimensions into Besov spaces. The results are based on general atomic decompositions of Besov spaces. Furthermore, we establish trace results for these subspaces with respect to the coordinate planes. It turns out that in many cases these traces are contained in lower dimensional shearlet coorbit spaces.  相似文献   

2.
Recently, shearlet groups have received much attention in connection with shearlet transforms applied for orientation sensitive image analysis and restoration. The square integrable representations of the shearlet groups provide not only the basis for the shearlet transforms but also for a very natural definition of scales of smoothness spaces, called shearlet coorbit spaces. The aim of this paper is twofold: first we discover isomorphisms between shearlet groups and other well-known groups, namely extended Heisenberg groups and subgroups of the symplectic group. Interestingly, the connected shearlet group with positive dilations has an isomorphic copy in the symplectic group, while this is not true for the full shearlet group with all nonzero dilations. Indeed we prove the general result that there exist, up to adjoint action of the symplectic group, only one embedding of the extended Heisenberg algebra into the Lie algebra of the symplectic group. Having understood the various group isomorphisms it is natural to ask for the relations between coorbit spaces of isomorphic groups with equivalent representations. These connections are examined in the second part of the paper. We describe how isomorphic groups with equivalent representations lead to isomorphic coorbit spaces. In particular we apply this result to square integrable representations of the connected shearlet groups and metaplectic representations of subgroups of the symplectic group. This implies the definition of metaplectic coorbit spaces. Besides the usual full and connected shearlet groups we also deal with Toeplitz shearlet groups.  相似文献   

3.
In this paper, we study the relationships of the newly developed continuous shearlet transform with the coorbit space theory. It turns out that all the conditions that are needed to apply the coorbit space theory can indeed be satisfied for the shearlet group. Consequently, we establish new families of smoothness spaces, the shearlet coorbit spaces. Moreover, our approach yields Banach frames for these spaces in a quite natural way. We also study the approximation power of best n-term approximation schemes and present some first numerical experiments.  相似文献   

4.
The shearlet representation has gained increasingly more prominence in recent years as a flexible and efficient mathematical framework for the analysis of anisotropic phenomena. This is achieved by combining traditional multiscale analysis with a superior ability to handle directional information. In this paper, we introduce a class of shearlet smoothness spaces which is derived from the theory of decomposition spaces recently developed by L. Borup and M. Nielsen. The introduction of these spaces is motivated by recent results in image processing showing the advantage of using smoothness spaces associated with directional multiscale representations for the design and performance analysis of improved image restoration algorithms. In particular, we examine the relationship of the shearlet smoothness spaces with respect to Besov spaces, curvelet-type decomposition spaces and shearlet coorbit spaces. With respect to the theory of shearlet coorbit space, the construction of shearlet smoothness spaces presented in this paper does not require the use of a group structure.  相似文献   

5.
This paper is concerned with the generalization of the continuous shearlet transform to higher dimensions. Similar to the two-dimensional case, our approach is based on translations, anisotropic dilations and specific shear matrices. We show that the associated integral transform again originates from a square-integrable representation of a specific group, the full n-variate shearlet group. Moreover, we verify that by applying the coorbit theory, canonical scales of smoothness spaces and associated Banach frames can be derived. We also indicate how our transform can be used to characterize singularities in signals.  相似文献   

6.
Coorbit space theory is an abstract approach to function spaces and their atomic decompositions. The original theory developed by Feichtinger and Gröchenig in the late 1980ies heavily uses integrable representations of locally compact groups. Their theory covers, in particular, homogeneous Besov-Lizorkin-Triebel spaces, modulation spaces, Bergman spaces and the recent shearlet spaces. However, inhomogeneous Besov-Lizorkin-Triebel spaces cannot be covered by their group theoretical approach. Later it was recognized by Fornasier and Rauhut (2005) [24] that one may replace coherent states related to the group representation by more general abstract continuous frames. In the first part of the present paper we significantly extend this abstract generalized coorbit space theory to treat a wider variety of coorbit spaces. A unified approach towards atomic decompositions and Banach frames with new results for general coorbit spaces is presented. In the second part we apply the abstract setting to a specific framework and study coorbits of what we call Peetre spaces. They allow to recover inhomogeneous Besov-Lizorkin-Triebel spaces of various types of interest as coorbits. We obtain several old and new wavelet characterizations based on explicit smoothness, decay, and vanishing moment assumptions of the respective wavelet. As main examples we obtain results for weighted spaces (Muckenhoupt, doubling), general 2-microlocal spaces, Besov-Lizorkin-Triebel-Morrey spaces, spaces of dominating mixed smoothness and even mixtures of the mentioned ones. Due to the generality of our approach, there are many more examples of interest where the abstract coorbit space theory is applicable.  相似文献   

7.
We provide explicit criteria for wavelets to give rise to frames and atomic decompositions in L2(?d), but also in more general Banach function spaces. We consider wavelet systems that arise by translating and dilating the mother wavelet, with the dilations taken from a suitable subgroup of GL(?d), the so-called dilation group.The paper provides a unified approach that is applicable to a wide range of dilation groups, thus giving rise to new atomic decompositions for homogeneous Besov spaces in arbitrary dimensions, but also for other function spaces such as shearlet coorbit spaces. The atomic decomposition results are obtained by applying the coorbit theory developed by Feichtinger and Gröchenig, and they can be informally described as follows: Given a function ψ ∈ L2(?d) satisfying fairly mild decay, smoothness and vanishing moment conditions, any sufficiently fine sampling of the translations and dilations will give rise to a wavelet frame. Furthermore, the containment of the analyzed signal in certain smoothness spaces (generalizing the homogeneous Besov spaces) can be decided by looking at the frame coefficients, and convergence of the frame expansion holds in the norms of these spaces. We motivate these results by discussing nonlinear approximation.  相似文献   

8.
We consider the space of complete and separable metric spaces which are equipped with a probability measure. A notion of convergence is given based on the philosophy that a sequence of metric measure spaces converges if and only if all finite subspaces sampled from these spaces converge. This topology is metrized following Gromov’s idea of embedding two metric spaces isometrically into a common metric space combined with the Prohorov metric between probability measures on a fixed metric space. We show that for this topology convergence in distribution follows—provided the sequence is tight—from convergence of all randomly sampled finite subspaces. We give a characterization of tightness based on quantities which are reasonably easy to calculate. Subspaces of particular interest are the space of real trees and of ultra-metric spaces equipped with a probability measure. As an example we characterize convergence in distribution for the (ultra-)metric measure spaces given by the random genealogies of the Λ-coalescents. We show that the Λ-coalescent defines an infinite (random) metric measure space if and only if the so-called “dust-free”-property holds.  相似文献   

9.
The topic of this article is a generalization of the theory of coorbit spaces and related frame constructions to Banach spaces of functions or distributions over domains and manifolds. As a special case one obtains modulation spaces and Gabor frames on spheres. Group theoretical considerations allow first to introduce generalized wavelet transforms. These are then used to define coorbit spaces on homogeneous spaces, which consist of functions having their generalized wavelet transform in some weighted Lp space. We also describe natural ways of discretizing those wavelet transforms, or equivalently to obtain atomic decompositions and Banach frames for the corresponding coorbit spaces. Based on these facts we treat aspects of nonlinear approximation and show how the new theory can be applied to the Gabor transform on spheres. For the S1 we exhibit concrete examples of admissible Gabor atoms which are very closely related to uncertainty minimizing states.  相似文献   

10.
This paper is concerned with the construction of generalized Banach frames on homogeneous spaces. The major tool is a unitary group representation which is square integrable modulo a certain subgroup. By means of this representation, generalized coorbit spaces can be defined. Moreover, we can construct a specific reproducing kernel which, after a judicious discretization, gives rise to atomic decompositions for these coorbit spaces. Furthermore, we show that under certain additional conditions our discretization method generates Banach frames. We also discuss nonlinear approximation schemes based on the atomic decomposition. As a classical example, we apply our construction to the problem of analyzing and approximating functions on the spheres.  相似文献   

11.
We show that coorbit spaces can be characterized in terms of arbitrary phase-space covers, which are families of phase-space multipliers associated with partitions of unity. This generalizes previously known results for time-frequency analysis to include time-scale decompositions. As a by-product, we extend the existing results for time-frequency analysis to an irregular setting.  相似文献   

12.
This article is concerned with frame constructions on domains and manifolds. The starting point is a unitary group representation which is square integrable modulo a suitable subgroup and therefore gives rise to a generalized continuous wavelet transform. Then generalized coorbit spaces can be defined by collecting all functions for which this wavelet transform is contained in a weighted Lp-space. Moreover, we show that a judicious discretization of the representation leads to an atomic decomposition and to Banach frames for these coorbit spaces.  相似文献   

13.
We continue the investigation of coorbit spaces which can be attached to every integrable, irreducible, unitary representation of a locally compact groupG and every reasonable function space onG. Whereas Part I was devoted to atomic decompositions of such spaces, Part II deals with general properties of these spaces as Banach spaces. Among other things we show that inclusions, the quality of embeddings, reflexivity and minimality and maximality of coorbit spaces can be completely characterized by the same properties of the corresponding sequence spaces. In concrete examples (cf. Part III) one recovers several and often difficult theorems with ease. Acknowledgement. The second author gratefully acknowledges the substantial support by the Österreichische Forschungsgemeinschaft (project nr. 09/0010). Major parts of the paper where prepared while the second author held a position at McMaster University (Hamilton/Canada).  相似文献   

14.
This paper is concerned with the construction of optimized grids and approximation spaces for elliptic differential and integral equations. The main result is the analysis of the approximation of the embedding of the intersection of classes of functions with bounded mixed derivatives in standard Sobolev spaces. Based on the framework of tensor-product biorthogonal wavelet bases and stable subspace splittings, the problem is reduced to diagonal mappings between Hilbert sequence spaces. We construct operator adapted finite element subspaces with a lower dimension than the standard full-grid spaces. These new approximation spaces preserve the approximation order of the standard full-grid spaces, provided that certain additional regularity assumptions are fulfilled. The form of the approximation spaces is governed by the ratios of the smoothness exponents of the considered classes of functions. We show in which cases the so-called curse of dimensionality can be broken. The theory covers elliptic boundary value problems as well as boundary integral equations. September 17, 1998. Date revised: March 5, 1999. Date accepted: September 20, 1999.  相似文献   

15.
Describing functions: Atomic decompositions versus frames   总被引:12,自引:0,他引:12  
The theory of frames and non-orthogonal series expansions with respect to coherent states is extended to a general class of spaces, the so-called coorbit spaces. Special cases include wavelet expansions for the Besov-Triebel-Lizorkin spaces, Gabortype expansions for modulation spaces, and sampling theorems for wavelet and Gabor transforms.  相似文献   

16.
We will show that all subspaces of well-ordered spaces are orderable, and we will characterize the well-orderability of subspaces of well-ordered spaces.  相似文献   

17.
The \(\alpha \)-modulation transform is a time-frequency transform generated by square-integrable representations of the affine Weyl–Heisenberg group modulo suitable subgroups. In this paper we prove new conditions that guarantee the admissibility of a given window function. We also show that the generalized coorbit theory can be applied to this setting, assuming specific regularity of the windows. This then yields canonical constructions of Banach frames and atomic decompositions in \(\alpha \)-modulation spaces. In particular, we prove the existence of compactly supported (in time domain) vectors that are admissible and satisfy all conditions within the coorbit machinery, which considerably go beyond known results.  相似文献   

18.
We use shift-invariant subspaces of the Hardy space on the bidisk to provide an elementary proof of the existence of Agler decompositions. We observe that these shift-invariant subspaces are specific cases of Hilbert spaces that can be defined from Agler decompositions and analyze the properties of such Hilbert spaces. We then restrict attention to rational inner functions and show that the shift-invariant subspaces provide easy proofs of several known results about decompositions of rational inner functions. We use our analysis to obtain a result about stable polynomials on the polydisk.  相似文献   

19.
Known results about hypercyclic subspaces concern either Fréchet spaces with a continuous norm or the space ω. We fill the gap between these spaces by investigating Fréchet spaces without continuous norm. To this end, we divide hypercyclic subspaces into two types: the hypercyclic subspaces M for which there exists a continuous seminorm p such that ${M \cap {\rm ker} p = \{0\}}$ and the others. For each of these types of hypercyclic subspaces, we establish some criteria. This investigation permits us to generalize several results about hypercyclic subspaces on Fréchet spaces with a continuous norm and about hypercyclic subspaces on ω. In particular, we show that each infinite-dimensional separable Fréchet space supports a mixing operator with a hypercyclic subspace.  相似文献   

20.
We prove that, if a finite metric space is of strictly negative type, then its transfinite diameter is uniquely realized by the infinite extender (load vector). Finite metric spaces that have this property include all spaces on two, three, or four points, all trees, and all finite subspaces of Euclidean spaces. We prove that, if the distance matrix is both hypermetric and regular, then it is of strictly negative type. We show that the strictly negative type finite subspaces of spheres are precisely those which do not contain two pairs of antipodal points. In connection with an open problem raised by Kelly, we conjecture that all finite subspaces of hyperbolic spaces are hypermetric and regular, and hence of strictly negative type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号