首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We report on first-principles calculations of spin-dependent quantum transport in a CrAs(0 0 1)/AlAs(0 0 1) heterogeneous junction and predict a strong diode effect of charge and spin current. The minority spin current is absolutely inhibited when the bias voltage is applied to the terminals of both CrAs and AlAs. The majority spin current is inhibited when the bias voltage is applied to the terminal of CrAs and “relaxed” when the bias voltage is applied to the terminal of AlAs. The charge and spin current diode are promising for reprogrammable logic applications in the field of spintronics.  相似文献   

2.
We study the effect of spin Coulomb drag on the magnetoresistance and the spin-current injection efficiency of a layered structure consisting of a nonmagnetic semiconductor sandwiched between two ferromagnetic electrodes of spin polarization p. The calculations are done within the framework of the drift-diffusion theory, which we generalize to include the spin trans-conductivity σ↑↓. We find that for p close to 100% the spin drag enhances the magnetoresistance, while for smaller values of p it reduces it. A new approach to the measurement of σ↑↓ is suggested.  相似文献   

3.
Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a ‘fixed frame’, and it can be viewed as an ‘analogous system’ for non-Abelian transport in the same spirit as Volovik’s identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the ‘fixed frame’ context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw’s scheme: non-Abelian hydrodynamical currents can be factored in a ‘non-coherent’ classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The “particle based hydrodynamics” of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non-conservation of the incoherent spin currents of the high temperature limit. We analyze the quantum-mechanical single particle currents of relevance to mesoscopic transport with as highlight the Ahronov-Casher effect, where we demonstrate that the intricacies of the non-Abelian transport render this effect to be much more fragile than its abelian analog, the Ahronov-Bohm effect. We subsequently focus on spin flows protected by order parameters. At present there is much interest in multiferroics where non-collinear magnetic order triggers macroscopic electric polarization via the spin-orbit coupling. We identify this to be a peculiarity of coherent non-Abelian hydrodynamics: although there is no net particle transport, the spin entanglement is transported in these magnets and the coherent spin ‘super’ current in turn translates into electric fields with the bonus that due to the requirement of single valuedness of the magnetic order parameter a true hydrodynamics is restored. Finally, ‘fixed-frame’ coherent non-Abelian transport comes to its full glory in spin-orbit coupled ‘spin superfluids’, and we demonstrate a new effect: the trapping of electrical line charge being a fixed frame, non-Abelian analog of the familiar magnetic flux trapping by normal superconductors. The only known physical examples of such spin superfluids are the 3He A- and B-phase where unfortunately the spin-orbit coupling is so weak that it appears impossible to observe these effects.  相似文献   

4.
The magnetic structure of a geometrically frustrated system Co2Cl(OH)3 is determined by comparing the observed proton NMR spectrum with numerical calculations based on various magnetic models. The best fit is obtained with a model that the magnetic moments of Co2+ ions in the triangular plane are parallel to the principal axis of local crystal field and those of Co2+ ions in the kagome lattice plane are randomly disordered in the a-b plane, which nearly bisects the angle between the principal axis of the local field and a line pointing towards the body center of the tetrahedron. The coexistence of the ferromagnetic order in the triangular plane and the random disorder in the kagome plane is consistent with the results of measurements by Zheng et al. However, the magnetic moments of Co2+ ions are not directed towards the body center of the tetrahedron as characteristic in the “spin ice” magnetic structure. Furthermore, the Co2+ ions in the triangular plane have a smaller magnitude of magnetic moment than those in the kagome plane. Thus, our result suggests that the transition metal compound Co2Cl(OH)3 is different from the “spin ice” in magnetic structure, although it is similar to rare-earth pyrochlores in crystal structure.  相似文献   

5.
The ab initio method of the full potential linearized augmented-plane-wave has been used to study the electronic band structure and the ferromagnetic (FM) properties of the organic radical MOTMP. The total and the partial density of states and the atomic spin magnetic moments are calculated. The calculation revealed that MOTMP has a stable ferromagnetic ground state and the spin magnetic moment is 1.0 μB per molecule, which is in good agreement with the experimental value. It is found that the unpaired electrons in this compound are localized in a molecular orbital constituted primarily of π*(NO) orbital and the main contribution of the spin magnetic moment comes from the NO free radical. It is also found that there exists ferromagnetic intermolecular interaction in the compound.  相似文献   

6.
A novel mechanism is proposed for magnetization reversal by the current of magnetic junctions with two metallic ferromagnetic layers and thin separating nonmagnetic layer. The spin-polarized current flows perpendicularly to the interfaces between the ferromagnetic layers, in one of which the spins are pinned and in the other they are free. No domain structure is formed in the ferromagnetic layers. The current breaks spin equilibrium in the free layer, which manifests itself in the injection or extraction of spins. The nonequilibrium spins interact with the magnetization of the lattice due to the effective field of s-d exchange, which is current dependent. At currents exceeding a certain threshold value, this interaction leads to magnetization reversal. Two threshold currents for magnetization reversal have been obtained theoretically, which are reached as the current increases or decreases, respectively. Thus, the phenomenon of current hysteresis is found. The calculated results are in good agreement with experiments on magnetization reversal by current in three-layer junctions of composition Co(I)/Cu/Co(II) prepared in a pillar form.  相似文献   

7.
The tight-binding linear muffin tin orbital (TB-LMTO) method within the local density approximation is used to calculate structural, electronic and magnetic properties of GdN under pressure. Both nonmagnetic (NM) and magnetic calculations are performed. The structural and magnetic stabilities are determined from the total energy calculations. The magnetic to ferromagnetic (FM) transition is not calculated. Magnetically, GdN is stable in the FM state, while its ambient structure is found to be stable in the NaCl-type (B1) structure. We predict NaCl-type to CsCl-type structure phase transition in GdN at a pressure of 30.4 GPa. In a complete spin of FM GdN the electronic band picture of one spin shows metallic, while the other spin shows its semiconducting behavior, resulting in half-metallic behavior at both ambient and high pressures. We have, therefore, calculated electronic band structures, equilibrium lattice constants, cohesive energies, bulk moduli and magnetic moments for GdN in the B1 and B2 phases. The magnetic moment, equilibrium lattice parameter and bulk modulus is calculated to be 6.99 μB, 4.935 Å and 192.13 GPa, respectively, which are in good agreement with the experimental results.  相似文献   

8.
The specific heat of single-crystal NdMnO3 was investigated from 2 to 20 K under different magnetic fields up to 8 T. All the specific heat data show a Schottky-like anomaly, which becomes more indistinctive as increasing magnetic field. The experiment data were successfully fitted by taking into account factors such as crystal-field splitting, the two-level Schottky anomaly, the lattice vibration, and type-A antiferromagnetic (A-AF) spin waves. It was found that the splitting of the ground state doublet of Nd3+ ion increases linearly with magnetic field. The above phenomena can be interpreted in terms of the model of unchanged effective molecular field at Nd3+ site caused by the ferromagnetic component of A-AF structure of Mn spins. This ferromagnetic component is likely caused by the GdFeO3-type octahedron rotation. In addition, it was also found that the magnetic field increases the spin-wave stiffness coefficient, but reduces the Debye temperature.  相似文献   

9.
We present a model of spin transport in a Co/Cu(1 1 1)/Co pseudo-spin-valve (PSV) structure where current is flowing in the current perpendicular-to-plane (CPP) geometry. The model considers ballistic spin-dependent transmission at the two Co–Cu interfaces, as well as diffusive spin relaxation within the Cu spacer and free Co layer. In the latter, the spin relaxation process is composed of the usual longitudinal spin relaxation due to spin flip scattering, as well as transverse spin relaxation due to spin precession. The resulting spin transfer torque exerted on the moments within the free Co layer is composed of two contributions, the main contribution coming from “absorbed” spins in the interfacial regions. The second contribution arises from the relaxation of spin accumulation within the free Co layer. The calculated critical current density for switching is estimated to be approximately between 3.3×107 and 1.1×108 A/cm2, which is in agreement with available experimental results.  相似文献   

10.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.  相似文献   

11.
The behaviour of ferromagnetic materials under very low magnetic field was investigated more than a century ago by Lord Rayleigh. However, it has been shown since that the so-called Rayleigh law fails for very low magnetic fields, although the explanation for this phenomenon was not given. An anomalous BH behaviour at very low alternating peak flux density in conventional grain-oriented (GO) and non-oriented (NO) electrical steels is reported. It has been found that the initial permeability is constant for all the measured frequencies (from 20 to 400 Hz) at peak flux density below 0.1 mT, and in this region the magnetisation is almost reversible (for both GO and NO). At higher flux density the BH loops become visibly irreversible, with a relatively narrow (for GO) or very wide (for NO) transition region. For GO the BH loop becomes visibly “distorted” for all frequencies at around 2 mT. The eddy current loss calculated from the so-called “classical” equation gives values higher than the measured total losses at lower frequencies. Both these measured results are difficult to explain.  相似文献   

12.
We present a theoretical study on the spin-dependent transport of electrons in hybrid ferromagnetic/semiconductor nanosystem under an applied bias voltage. Experimentally, this kind of nanosystem can be realized by depositing a magnetized ferromagnetic stripe with arbitrary magnetization direction on the surface of a semiconductor heterostructure. It is shown that large spin-polarized current can be achieved in such a nanosystem. It is also shown that the spin polarity of the electron transport can be switched by adjusting the applied bias voltage. These interesting properties may provide an alternative scheme to realize spin injection into semiconductors, and such a nanosystem may be used as a tunable spin-filter by bias voltage.  相似文献   

13.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

14.
Tunneling current in a ferromagnet/superconductor/ferromagnet double tunnel junction induces a nonequilibrium spin accumulation in the superconductor. We study theoretically the response of such a system to applied magnetic field. We show that the interplay between the magnetic field and the spin accumulation could lead to novel bias voltage dependence and magnetic field dependence of the superconducting gap function, and bring in anomalous asymmetry in the spin-dependent transport. Our study also indicates a possible application of the spin injection.  相似文献   

15.
The effect of ferromagnetic layers on the spin polarization of holes and electrons in ferromagnet-semiconductor superlattices with a fixed Mn δ-layer thickness of 0.11 nm and different GaAs interlayer thicknesses varying in the range from 2.5 to 14.4 nm and a fixed number of periods (40) is studied by means of hot-electron photoluminescence (HPL). Here, our study of the HPL demonstrates that the holes in δ-layers of (Ga,Mn)As DMS occupy predominantly the Mn acceptor impurity band. The width of the impurity band decreases with the increase of the interlayer distance. We also found that an increase in the GaAs interlayer thickness softens the magnetic properties of the ferromagnetic layers as well as reduces the carrier polarization. It is demonstrated that the hole spin polarization in the DMS layers and spin polarization of electrons in nonmagnetic GaAs are proportional to the sample magnetization.  相似文献   

16.
We demonstrate that a current pulse of a non-uniform spin-polarized current density in a nanomagnet can drive, apart from magnetization reversal a static magnetic vortex. This vortex configuration can be achieved in low shape anisotropy spin valves of elliptical cross-sectional area. These non-uniform configurations exist also in presence of either ion mill damages below the nano-aperture or thermal effects at low temperature. We performed a numerical experiment of spin-torque driven ferromagnetic resonance in a magnetic vortex configuration, our results predict a frequency response with a few maxima and minima related to small oscillation of the vortex state around its equilibrium configuration.  相似文献   

17.
Low-frequency magnetic properties of ferromagnetic composite wires were studied with and without coating by ferrofluid. Non-magnetic CuBe wires of 0.1 mm diameter were electroplated with FeCoNi layer of 1 μm thickness. Magnetization curves were measured in the frequency range of 10 Hz–3 kHz. The composite CuBe/FeCoNi/ferrofluid material shows a hysteretic behaviour in a small field. The hysteresis loop of ferrofluid covered electroplated wire is not a simple sum of the ferrofluid “wire” plus non-covered wire signals. It indicates an interaction between magnetic wire and ferrofluid which can be revealed by low-frequency measurements. The combination “electroplated wire/ferrofluid” can be considered as a new type of composite magnetic material consisting of solid magnetic core coated by complementary liquid magnetic material. Low-frequency measurements in presence of ferrofluid can be a useful method to study magnetic properties of ferromagnets.  相似文献   

18.
Electronic and magnetic properties of the zincblende CrSb(0 0 1) surfaces and its interfaces with GaSb(0 0 1) and InAs(0 0 1) semiconductors are studied within the framework of the density-functional theory using the FPLAPW+lo approach. We found that the Cr-terminated surfaces retain the half-metallic character, while the half-metallicity is destroyed for the Sb-terminated surfaces due to surface states, which originate from p electrons. The phase diagram obtained through the ab-initio atomistic thermodynamics shows that at phase transition has occurred. Also the half-metallicity character is preserved at both CrSb/GaSb and CrSb/InAs interfaces. The conduction band minimum (CBM) of CrSb in the minority spin case lies about 0.63 eV above that of InAs, suggesting that the majority spin can be injected into InAs without being flipped to the conduction bands of the minority spin. On the other hand the CrSb/GaSb interface has a greater valence band offset (VBO) compared with the CrSb/InAs interface and the minority electrons have lower contribution in the injected currents and hence more efficient spin injection into the GaSb semiconductor. Thus the CrSb/GaSb and CrSb/InAs heterojunctions can be useful in the field of spintronics.  相似文献   

19.
The electronic structure and the magnetic properties of transition metal phosphonate Co(PhPO3)·H2O have been studied by first-principles within the density-functional theory (DFT) and the full potential linearized augmented plane wave (FP-LAPW) method. The total energy, the total magnetic moment, the atomic spin magnetic moments and the density of states(DOS) of Co(PhPO3)·H2O were all calculated. The calculations reveal that the title compound is a metallic antiferromagnet and has a metallic ferromagnetic metastable state, which are in good agreement with the experiment. The spin magnetic moment of Co(PhPO3)·H2O is about 4.93 μBμB per molecule, and it is mainly assembled at the cobalt atom, at the same time, with a little contribution from the P, O1, O2, O3.  相似文献   

20.
We present the room-temperature ferromagnetism in the (Ga,Mn)N films grown on n-type GaN templates by plasma-enhanced molecular beam epitaxy for semiconductor spintronic device applications. Despite of the possible interface effects between the (Ga,Mn)N layers and n-type GaN templates, the (Ga,Mn)N films were found to exhibit the ferromagnetic ordering above room temperature. The magnetic force microscopy identified the magnetic domains with the different magnetic orientations at room temperature, indicating the existence of the ferromagnetic long-range ordering. In Raman spectra, an additional peak at 578 cm−1 was observed, which is attributed to the local vibration of substitutional Mn in the (Ga,Mn)N lattice. Therefore, it is believed that the ferromagnetic ordering in (Ga,Mn)N is due to the carrier-mediated Ruderman-Kittle-Kasuya-Yosida interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号