首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

2.
A systematic procedure has been laid out for assessment of fluid flow and heat transfer parameters for a slot jet impinging on a concave semicylindrical surface. Based on Walz's modifications of the Karman-Pohlhausen integral method, expressions have been derived for evaluation of the momentum thickness, boundary layer thickness and the displacement thickness at the stagnation point. The work then has been extended for the estimation of thermal boundary layer thickness and local heat transfer coefficients. A correlation has been presented for the Nusselt number at the stagnation point as a function of the Reynolds number for different non-dimensional distances from the exit plane of the jet to the impingement surface.
Berechnung des Wärmeübergangs im Staupunkt eines Strahles, der aus einer rechteckigen öffnung auf eine konkave halbzylindrische Fläche auftrifft
Zusammenfassung Es wurde eine systematische Prozedur für die Abschätzung von Strömungs- und Wärmeübergangsparametern für einen Strahl, der auf eine konkave halbzylindrische Fläche auftrifft, aufgestellt. Basierend auf Walz's Modifikationen der Karman-Pohlhausen Integral-Methode, wurden Ausdrücke für die Berechnung der Impulsdicke, der Grenzschichtdicke und die Versetzungsdicke am Staupunkt abgeleitet. Die Arbeit wurde dann auf die Abschätzung der thermischen Grenzschichtdicke und der lokalen Wärmeübertragungskoeffizienten ausgedehnt. Es wird eine Beziehung für die Nusselt-Zahl am Staupunkt als eine Funktion der Reynolds-Zahl für verschiedene dimensionslose Abstände von der Austrittsfläche des Schlitzes bis zur Aufprallfläche aufgestellt.

Nomenclature c p specific heat at constant pressure - h 0 heat transfer coefficient at the stagnation point - H distance from the exit plane of the jet to the impingement surface - k thermal conductivity - Nu .5 Nusselt number based on impinging jet quantities =h 0.50/k - Nu .5,0 stagnation point Nusselt number =h 0 0.50/k - p pressure - p a ambient pressure - p 0 maximum pressure or stagnation pressure - p(x) static pressure at a distancex from the stagnation point - p(x*) static pressure at nondimensional distancex* from the stagnation point - Re J jet Reynolds number =U J W/ - Re 0.5 Reynolds number based on impinging jet quantities =u m0 0.50/ - T temperature - T* nondimensional temperature =(T–T W)/(T JT W) - T a room temperature - T J jet temperature - T W wall temperature - u velocity component inx andx directions - u m jet centerline (or maximum) free jet velocity: external (or maximum) boundary layer velocity aty = m - u m0 arrival velocity defined as the maximum velocity the free jet would have at the plane of impingement if the plane were not there - U J jet exit velocity - W jet nozzle width - x* nondimensional coordinate starting at the stagnation point =x/2 0.50 - x, y rectangular cartesian coordinates - y coordinate normal to the wall and starting at the wall - ratio of thermal to velocity boundary layer thickness = T/ m - 0 ratio of thermal to velocity boundary layer thickness at the stagnation point - * inner layer displacement thickness - .50 jet half width at the plane of impingement if the plate were not there - d.5 free jet (half width) thickness whereu=u m/2 - m inner boundary layer thickness atu =u m - T thermal boundary layer thickness - nondimensional coordinate normal to wall =y/ m - T nondimensional coordinate normal to wall =y/ T - Pohlhausen's form parameter - dynamic viscosity - kinematic viscosity = / - fluid density - momentum thickness - 0 momentum thickness at the stagnation point  相似文献   

3.
Zusammenfassung In einem Doppelrohr-Gegenstrom-Wärmetauscher wurde der Einfluß von überlagerten Strömungspulsationen auf den Wärmeübergang mit Wasser als Wärmeübertragungsmedium untersucht. Versuchsparameter waren dieRe-Zahl, die zwischen 1000 und 107000 variiert wurde, die Pulsationsfrequenz im Bereich zwischen 0,5 und 4 Hz und das Verhältnis der Amplitude der überlagerten Pulsationsgeschwindigkeit zur stationären Grundgeschwindigkeit, das Werte bis 4 erreichte. Dabei konnten erhebliche Anstiege der Nußelt-Zahlen im Vergleich zum stationären Fall bei gleicher Grundgeschwindigkeit festgestellt werden. Die Ergebnisse zeigen eine komplizierte Abhängigkeit von der Pulsationsfrequenz, -amplitude und Druckwellenform, wobei die Kavitation einen entscheidenden Einfluß hat.
Heat transfer in a pipe with superimposed pulsating flow
The influence of superimposed flow pulsation on heat transfer was investigated in a double-pipe counter-flow heat exchanger with water as the medium of heat transfer.Re-numbers between 1000 and 107000, a frequency range of 0.5 to 4 cycles per second and amplitude ratios of up to 4 were considered. The superimposition of a pulsating flow with zero-mean velocity on a steady flow brought about an appreciable improvement of the overallNu- number. The results show a complicated relationship between the heat transfer, the frequency and amplitude of the pulsating component, the form of pressure wave and the degree of cavitation.

Formelzeichen A [m2] Wärmeaustauschfläche - a=/c p [m2/s] Temperaturleitfähigkeit - c p [kJ/kg K] spezifische Wärmekapazität - d [m] Rohrdurchmesser - f[s–1,Hz] Pulsationsfrequenz - h[kJ/kg] spezifische Enthalpie - h K [m] Kolbenhub - l [m] Länge des Wärmetauscherrohres - m[kg/s] Massenstrom - Nu=d/ Nußelt-Zahl - Pr=/a Prandtl-Zahl - Q[kW] Wärmestrom - p [bar] Druck - Rev·d/ Reynolds-Zahl - r [m] Rohrradius - s [m] Wanddicke - t [°C] Temperatur - t w [°C] Wandtemperatur innen - [m/s] Strömungsgeschwindigkeit - v [m/s] Strömungsgeschwindigkeit über den Rohrquerschnitt und eine Pulsations periode gemittelt Pulsationskomponente der Strömungs geschwindigkeit - W= max/ Welligkeit - [W/m2K] Wärmeübergangszahl - Nu/Nu relativer Größtfehler - tlog logarithmische Temperaturdifferenznach Gl. (2) - [W/Km] Wärmeleitfähigkeit - v m2/s] kinematische Zähigkeit - [kg/m3] spezifische Masse - [s] Zeit - [s–1] Winkelgeschwindigkeit Indizes a außen - i innen - K Kolben - max maximal - p pulsierend - s stationär - ü Über-in Verbindung mit Drücken - w Wand - 1 Wärmetauscher-Eintritt Primärkreislauf - 2 Wärmetauscher-Austritt Primärkreislauf Abkürzungen P Phosphor - SF sauerstofffrei - OT oberer Totpunkt - UT unterer Totpunkt  相似文献   

4.
Zusammenfassung Es wird nachgewiesen, daß in einem fluiden Zweiphasensystem unter den Bedingungene 2 > 1 >r 2, d/dc>0 Marangoni-Instabilität in Form von Rollzellen bei Stoffübergang aus der Phase mit der kleineren kinematischen Zähigkeit und Stabilität bei Übergang aus der Phase mit der größeren kinematischen Zähigkeit auftritt. Führt der Stoffübergang zu einer instationären Dichtekonvektion, kann zusätzlich freie Grenzflächenkonvektion in Form von Spreitungen auftreten.
On the occurrence of Marangoni instability
It is proved, that in a fluid two-phase system under the conditionse 2>1>r 2, d/dc> 0 Marangoni instability occured in form of roll cells during mass transfer out of the phase with the lower kinematic viscosity and stability during mass transfer out of the phase with the higher kinematic viscosity. If a unsteady-state density convection results from mass transfer interfacial turbulence can occur in form of eruptions.

Bezeichungen e 2 a/b - r 2 D a/D b - kinematische Zähigkeit - D Diffusionskoeffizient - Grenzflächenspannung - c Konzentration Indices a kennzeichnet Phase mit der größeren kinematischen Zähigkeit - b kennzeichnet Phase mit der kleineren kinematischen Zähigkeit  相似文献   

5.
An analytical model to predict heat transfer rates to an incompressible fluid in turbulent flow, with fully developed velocity profile, between a heated plate and a parallel, insulated plate is developed. The model employs van Driest's mixing length expression near the wall, a constant eddy diffusivitiy in the core and a constant turbulent Prandtl number. An approximate solution obtained by employing Rayleigh-Ritz method is shown to compare well with the exact solution obtained by numerical integration of the differential equations. The results are compared with the available experimental data and analytical solutions.
Anwendung der Rayleigh-Ritz-Methode auf die Wärmeübertragung bei erzwungener turbulenter Strömung
Zusammenfassung Es wird ein analytisches Modell zur Berechnung der Wärmeübertragung an ein inkompressibles Fluid in turbulenter Strömung mit voll ausgebildetem Geschwindigkeitsprofil zwischen einer beheizten Platte und einer dazu parallelen isolierten Platte angegeben. Das Modell verwendet van Driest's Ausdruck für die wandnahe Mischungslänge, eine konstante Wirbeldiffusivität im Kern und eine konstante turbulente PrandtlZahl. Eine Näherungslösung nach der Rayleigh-Ritz-Methode läßt sich gut mit der exakten Lösung vergleichen, die durch numerische Integration der Differentialgleichungen erhalten wurde. Die Ergebnisse werden mit verfügbaren Versuchswerten und analytischen Lösungen verglichen.

Nomenclature A+ dimensionless constant in van Driest formula - a+ dimensionless distance from the wall after which the eddy diffusivity of momentum is constant - b half-gap of passage - b+ dimensionless half-gap=bu*/ - Cf skin friction coefficient - Cp constant pressure specific heat - d hydraulic mean diameter defined as 4xarea/perimeter=4b - h convective heat transfer coefficient - K+ dimensionless constant in van Driest formula - k fluid thermal conductivity - m mass flow rate of fluid - Nu Nusselt number hd/k - P pressure - Pr Prandtl number=/ - Prt turbulent Prandtl number=m/ - qw heat flux at wall - Re Reynolds number=vmd/ - T Temperature - u+ dimensionless velocity=Vx/u* - u* friction velocity= - Vx axial velocity - x axial distance from the entrance - x+ dimensionless distance=x/d - y distance from the heated wall - y+ dimensionless distance=yu*/ Greek Symbols thermal molecular diffusivity - function equal to (H+)/ - boundary layer thickness - H eddy diffusivity of heat - m eddy diffusivity of momentum - m0 uniform eddy diffusivity of momentum in the core - dimensionless temperature - T-Ti/qwd/k uniform heat flux - T-Tw/Ti-Tw uniform temperature - fluid kinematic viscosity - fluid density - fluid shearing stress - bulk mean temperature—fully developed region - fully developed transverse temperature profile Suffixes 1 fully developed - 2 in the entrance region - i at the inlet - m bulk mean value - w at the heated wall  相似文献   

6.
Zusammenfassung Mit Hilfe der Mischungswegtheorie wurden Gleichungen zur Berechnung der Geschwindigkeitsprofile und des Druckabfalles bei der turbulenten, abwärtsterichteten Gas/Film-Strömung aufgestellt. Zur Berechnung des Wärmeübergangs wurde die turbulente Temperaturleitfähigkeit aus einem halbempirischen Ansatz bestimmt. Es konnte eine befriedigende Übereinstimmung zwischen den berechneten und gemessenen Nußelt-Zahlen bei der Oberflächenverdampfung erzielt werden. Zur Auslegung von Fallstromverdampfern wurde ein Computerprogramm erstellt. Damit lassen sich Einflußgrößen wie Wandtemperatur, Filmdicke, Verdampfungsrate usw. in Abhängigkeit von der Lauflänge bestimmen.
Flow and heat transfer in surface evaporation and film condensation
Using the mixing length model, equations were established to calculate the velocity profiles and pressure drop in turbulent downward directed gas/film flow. The thermal diffusivity needed for the calculation of heat transfer was determined from a semiempirical model. The calculated Nußelt-numbers agreed very well with experiments. For the design of falling-film evaporators, a computer program was developed, which enables to evaluate wall temperature, film thickness, evaporation rate etc. as a function of flow-path length.

Formelzeichen a Temperaturleitfähigkeit - c spez. Wärmekapazität - d Durchmesser - fm bezogene mittlere turbulente Temperaturleitfähigkeit - Fi /(32/g)1/3) Filmkennzahl - Fr Froude-Zahl - g Fallbeschleunigung - Ka 3/g4 Kapitza-Zahl - L Rohrlänge - l Mischungsweg - m Massenstrom - Nu (2/g)1/3/ Nußelt-Zahl - Nu / Nußelt-Zahl des Filmes - p Druck - Pr /a Prandtl-Zahl - q Wärmestromdichte - R Radius - Re Reynolds-Zahl - Reü Übergangs-Reynolds-Zahl - Rew Schubspannungs-Reynolds-Zahl der Flüssigkeit - r radiale Koordinate - T Temperatur - u Geschwindigkeit - uw Schubspannungsgeschwindigkeit der Flüssigkeit - u Grenzflächengeschwindigkeit - uT Schubspannungsgeschwindigkeit des Gases - y Wandabstand - y* y/ dimensionsloser Wandabstand - z axiale Koordinate Griechische Zeichen Wärmeübergangskoeffizient - Filmdicke - dyn. Viskosität - dimensionslose Temperatur - Wärmeleitfähigkeit - kin. Viskosität - Dichte - Oberflächenspannung - Schubspannung Zusatzzeichen und Indizes G Gas - K Kondensation - s Sättigung - t turbulent - w Wand - wi Welleninstabilität - Phasengrenze - - mittlere Größe  相似文献   

7.
Zusammenfassung Der lokale Stoffübergang wurde in Abhängigkeit von der Meßlänge, dem Startort und der Zulaufhöhe gemessen. Der Gültigkeitsbereich der Theorie von Nusselt wird ermittelt. Die Reynolds-Zahl nahm Werte zwischen 3,86 und 2496 an. Die örtlich wirkende Hydrodynamik ist entscheidend für das Anwachsen der örtlichen Sherwood-Zahl. Die Genauigkeit aller Versuchsergebnisse kann auf ± 5% abgeschätzt werden.
Investigation of the local mass transfer of a laminar and turbulent falling liquid film
The local mass transfer was measured as a function of the measuring length, the starting point and the liquid height above the ring-slot. The range of the Reynolds number was 3,86 Re 2496. The validity of the Nusselt theory and the range of it is shown. The local hydrodynamic is the most important factor of the increase of the local Sherwood number. The accuracy of the measurements is ± 5%.

Bezeichnungen a Temperaturleitfähigkeit m2/s=/(cp) - c Konzentration, c=¯c + c kmol/m3 - ci0 Konzentration im Flüssigkeitskern kmol/m3 - D Diffusionskoeffizient m2/s - EL-NR Elektrodennummer - Fa Faraday-Konstante A s/kgäq=96,5·106 - g Erdbeschleunigung m/s2 - iG Grenzstromdichte A/m2 - u Geschwindigkeit in x-Richtung, u= + u - U Umfang des Rohres m - v Geschwindigkeit in y-Rich- m/stung, v=¯v + v - V* Volumenstrom m3/s - x Lauflänge, Koordinate in m Strömungsrichtung - xM Meßlänge für den Stoff-Übergang m - xST Startort für den Stoff-Übergang m - y Wegkoordinate senkrecht zur Rohroberfläche m - z Wertigkeit der Elektro-denreaktion kgäq/kmol - ZH Zulaufhöhe m - Wärmeübergangskoeffizient W/m2C - Stoffübergangskoeffizient m/s - Filmdicke m - Wärmeleitfähigkeit W/(mC) - kinematische Viskosität m2/s - Re=u/=V*/U Reynolds-Zahl - Pr=/a=cp/ Prandtl-Zahl - Sc=/D Schmidt-Zahl - Nu= / Nusselt-Zahl - Sh= /D Sherwood-Zahl - SHL lokale Sherwood-Zahl - SHM mittlere Sherwood-Zahl - - zeitlich gemittelt - örtlich gemittelt Die Durchführung der Arbeit am Institut für Verfahrens — und Kältetechnik der ETH Zürich bei Prof. Dr. P. Grassmann wurde ermöglicht durch Zuschüsse der Kommission zur Förderung der wissenschaftlichen Forschung und meiner Eltern.  相似文献   

8.
In natural convection heat transfer through a thin horizontal layer of carbon dioxide, maxima in the equivalent thermal conductivities are obtained in the vicinity of the respective pseudocritical temperatures at pressures of 75.8, 89.6 and 103.4 bar. The maxima are the more pronounced, the closer the critical point is approached.Comparison of experimental results with Nusselt equations shows good agreement except for the immediate vicinity of the pseudocritical temperature.In visual observations a distinct change in flow structure appears in the immediate vicinity of the pseudocritical temperature. A steady state polygon pattern and a boiling-like action could not be observed in this geometry.
Zusammenfassung Beim Wärmetransport durch freie Konvektion in einer dünnen waagerechten Schicht von Kohlendioxid ergaben sich Maxima der scheinbaren Wärmeleitfähigkeit in der Nähe der pseudokritischen Temperaturen bei Drükken von 75,8, 89,6 und 103,4 bar. Die Maxima sind um so ausgeprägter, je mehr man sich dem kritischen Punkt nähert.Ein Vergleich der Versuchsergebnisse mit Nusseltbeziehungen ergibt gute Übereinstimmung außer in unmittelbarer Umgebung der pseudokritischen Temperatur. Direkte Beobachtungen der Konvektionsmuster zeigen in unmittelbarer Umgebung der pseudokritischen Temperatur eine deutliche Strukturänderung. Ein stationäres Zellmuster und siedeähnliche Vorgänge konnten in dieser Anordnung nicht beobachtet werden.

Nomenclature A area of the heating or cooling plate - C constant in the correlation - g acceleration of gravity - h heat transfer coefficient - k thermal conductivity of fluid in the gap - k e equivalent thermal conductivity - m, n exponents of dimensionless numbers - q heat flux - T C,PC absolute temperature; critical C, pseudocritical PC - Gr Grashof numberg ( h c) 3/ 2 - Nu Nusselt numberh/k - Pr Prandtl number/ - thermal diffusivity - coefficient of volume expansion - width of gap - c,h temperature of cooling (c)-, heating (h)-plate - m arithmetic mean temperature ( c+ h)/2 - kinematic viscosity - c,h fluid density at the temperature of the cooling (c)- or heating (h)-plate - heat flow rate through the gap  相似文献   

9.
Convection and heat transfer of elliptical tubes   总被引:2,自引:0,他引:2  
Convection heat transfer (including natural and forced convection) of elliptical tubes had been studied system-atically. The experienced formula of heat transfer had been given. It presents fin efficiency of rectangular finned elliptical tube and optimized fin geometry (i.e. length/width ratio) and fin spacing for rectangular fin.
Konvektion und Wärmeübergang an elliptischen Rohren
Zusammenfassung Konvektion und Wärmeübergang (sowohl bei freier als auch bei erzwungener Konvektion) an elliptischen Rohren wurden systematisch untersucht. Es wird eine aus dem Experiment abgeleitete Beziehung für den Wärmeübergang angegeben, die den Gütegrad elliptischer Rohre mit Rechteckrippen unter optimierter Rippengeometrie (Längen- zu Breitenverhältnis und Rippenabstand) beinhaltet. Stichworte: Konvektiver Wärmeübergang, Rippengütegrad, Elliptische Rohre mit Rechteckrippe.

Nomenclature A length of a rectangular fin - A F area of a fin - A f overall fin area of per length - A r tube surface of per length - B width of a rectangular fin - Gr Grashof number - N fin number of per length - Nu =hl/ Nusselt number - Pr Prandtl number - Ra =Gr·Pr Rayleigh number - Re =wl/ Reynolds number - S 1 transverse tube pitch - S 2 longitudinal tube pitch - w fluid velocity - a long axis of a ellipse - b short axis of a ellipse - c =a/b shape factor - d e equivalent diameter - g acceleration of gravity - h heat exchange coefficient - l characteristic length - t fin spacing Greek symbols coefficient of thermal expansion - fin thickness - fm area average fin efficiency - coefficient of fluid thermal conductivity - f fin's thermal conductivity - kinematic viscosity  相似文献   

10.
Übersicht Ausgehend von einer Neuformulierung der Saint-Venantschen Lösung der drillungsfreien Querkraftbiegung wird die aus dieser und der reinen Torsion resultierende Mischenergie berechnet. Diese ist nach Maßgabe eines von der Poissonzahl abhängenden Faktors durch einen rein geometrischen Mischarbeitsvektor a bestimmt, welcher nur in Ausnahmefällen verschwindet. Die Berechnung des Vektors a wird auf die Lösung des Torsionsproblems zurückgeführt. — Mit Hilfe des Betti-Rayleighschen Reziprozitätssatzes folgt dann aus der Formel für die Mischarbeit eine neue Schubmittelpunktsformel, die bei verschwindendem in die Formeln von Weber und Trefftz übergeht. — Den Schluß bildet die technische Behandlung des Schubmittelpunktes dünnwandiger Querschnitte. Bei Hohlquerschnitten muß eine Korrektur der integralen Kompatibilitätsbedingungen beachtet werden.
On the centre of shear
Summary First we reformulate Saint-Venant's solution of bending of a beam by a terminal transverse load by using cartesian index notation. Then, we calculate the elastic interaction energy of this type of bending with pure torsion. Apart from a material factor depending on Poisson's ratio , this energy is determined by a purely geometrical interaction vector a which is vanishing in exceptional cases only, contrary to a common opinion. The calculation of a reduces to solving the problem of pure torsion. — Using the expression for the interaction energy and Betti-Rayleigh's reciprocity theorem, a new formula for the center of shear will be derived. Neglecting the influence of the formula reduces to Weber's and Trefftz's formulae. — Finally, we describe the engineering treatment of the centre of shear of thin-walled cross sections. For thin tubes a corrected version of the integral conditions of compatibility must be taken into account.
  相似文献   

11.
The effect of a uniform external magnetic field on the laminar, incompressible rarefied gas flow along an infinite porous flat plate is studied under the following conditions: 1) there is uniform suction, 2) the external flow velocity varies periodically with time in magnitude but not in direction, 3) the magnetic Reynolds number is small and 4) the current occurs under slip flow boundary conditions. Expressions for the velocity and temperature fields in the boundary layer are obtained. The response of skin friction, and heat transfer to the fluctuating stream is studied for variations in the rarefaction parameter h 1, the magnetic field parameter M, and the frequency of the fluctuating stream.Nomenclature c p specific heat of the gas - f 1 Maxwells reflection coefficient - f 2 thermal accommodation coefficient - G as defined in (36) - h 1 rarefaction parameter (L 1 v 0/) - h 2 nondimensional temperature jump coefficient (L 2 v 0/) - H amplitude of the skin friction - k thermal conductivity - K n Knudsen number - L mean free path - L 1 (2–f 1/f 1) L - L 2 - M magnetic field parameter ( 0 B 0 2 /v 0 2 ) - m 1/2[1+(1+4M+4i)1/2], m r+im i - n 1 1/2[1+(1+4M)1/2] - q heat flux - R suction Reynolds number - T temperature - x, y coordinates along and perpendicular to the plates - u, v velocity components along x, y-directions - density - kinematic viscosity - 0 electrical conductivity - Prandtl number - frequency of the fluctuating stream - nondimensional frequency parameter (/v 0 2 ) - nondimensional distance from wall (v 0 y/) - phase lead - U 0 0 mean velocity in the boundary layer - U 0 1, U 0 2 amplitude of the velocity fluctuation in the boundary layer - specific heat ratio  相似文献   

12.
The present work aims to consider the.fourth test of general relativity theory by Shapiro.using radar echo delay in Yu’s(Ω,Aμν)-field theory.  相似文献   

13.
An approximate method is described for the consideration of energy transfer by radiation during the utilization of real properties of a gas (in particular, the frequency-dependent absorption coefficient under conditions of local thermal equilibrium). With increasing pressure, it becomes necessary to take self-absorption into account over almost the entire frequency spectrum.Calculations are carried out for a wall-stabilized cylindrical electric arc in hydrogen as an example for a pressure of 100 atm and channel radii of 0.3, 1, and 3 cm at values of current strength up to the order of 10 A. The strong effect of radiation on the current-voltage characteristic of the arc, the gas temperature, and the nature of its distribution over the arc radius is demonstrated.The process of energy transfer by radiation plays a significant and sometimes predominant role in the thermal balance of electric arcs with high current strengths [1–9]. Calculations have been performed for cylindrical arcs in atmospheres of argon and hydrogen [5, 7] with allowance for energy transfer by radiation and for atmospheric pressure in which case the gas is essentially transparent to radiation. Approximate estimates were obtained for the self-absorbed portion of the radiation.The role played by radiation increases with increasing current strength, arc radius, and pressure, while self-absorption in this process extends over an increasingly large region of the spectrum. Hence, calculations must be carried out for the arc if conditions are such that the gas in the arc does not transmit radiation.In [10–13], an approximate method was developed for taking into account energy transfer by radiation in the presence of intense selfabsorption as applied to heat transfer problems under conditions of local thermal equilibrium with allowance for the variation of the absorption coefficient as a function of the frequency. The conditions for local thermal equilibrium in an arc passing through an argon or hydrogen atmosphere are fulfilled for pressures greater than atmospheric pressure and for current strengths greater than 10 A [14–16], The results of [10–12] were used as the foundation for calculations based on an electric arc in argon at atmospheric pressure, under which conditions, self-absorption affects only the transitions to the ground state. The part played by radiation in the heat transfer process is smaller than the part played in the energy transfer by conduction. Calculations confirmed the results of [5, 7].The role of energy transfer by radiation in the energy balance of the arc increases with increasing pressure, while in turn, the role of the continuous spectrum increases for the radiation. The results of calculations performed for a wall-stabilized arc burning in an atmosphere of hydrogen at a pressure of 100 atm are given in the present paper. In this case, almost the entire energy supply is lost by radiation. The approximate method of accounting for energy transfer by radiation is demonstrated by an example.Notation and T gas density and temperature, respectively - u velocity - cp heat capacity of the gas at constant pressure - coefficient of thermal conductivity - coefficient of electrical conductivity - x and r cylindrical coordinates - r0 channel radius - I current strength - E electric field strength - u ° equilibrium value of radiation energy density - u value of radiation energy density - radiation frequency - divergence of energy flux density transported by radiation - k absorption coefficient - c speed of light - i emissivity of the i-th region of the spectrum  相似文献   

14.
In this paper, a method using the mean velocity profiles for the buffer layer was developed for the estimation of the virtual origin over a riblets surface in an open channel flow. First, the standardized profiles of the mixing length were estimated from the velocity measurement in the inner layer, and the location of the edge of the viscous layer was obtained. Then, the virtual origins were estimated by the best match between the measured velocity profile and the equations of the velocity profile derived from the mixing length profiles. It was made clear that the virtual origin and the thickness of the viscous layer are the function of the roughness Reynolds number. The drag variation coincided well with other results.Nomenclature f r skin friction coefficient - f ro skin friction coefficient in smooth channel at the same flow quantity and the same energy slope - g gravity acceleration - H water depth from virtual origin to water surface - H + u*H/ - H false water depth from top of riblets to water surface - H + u*H/ - I e streamwise energy slope - I b bed slope - k riblet height - k + u*k/ - l mixing length - l s standardized mixing length - Q flow quantity - Re Reynolds number volume flow/unit width/v - s riblet spacing - u mean velocity - u* friction velocity = - u* false friction velocity = - y distance from virtual origin - y distance from top of riblet - y 0 distance from top of riblet to virtual origin - y v distance from top of riblet to edge of viscous layer - y + u*y/ - y + u*y/ - y 0 + u*y 0/ - u + u*y/ - shifting coefficient for standardization - thickness of viscous layer=y 0+y - + u*/ - + u*/ - eddy viscosity - ridge angle - v kinematic viscosity - density - shear stress  相似文献   

15.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

16.
Zusammenfassung Zur Klärung der physikalischen Vorgänge im Verdampferteil einer Filmverdampfungsbrennkammer wird in Erweiterung der adiabaten Verdunstung der Fall der einseitig benetzten ebenen Platte behandelt, die sowohl im Gleichals auch im Gegenstrom von der heißen Außenluft umströmt wird. Die für beide Strömungsfälle maßgebenden Grenzschichtgleichungen werden simultan unter Berücksichtigung temperatur- und konzentrationsabhängiger Stoffwerte mit einem impliziten Differenzenverfahren gelöst. Dabei ergeben sich für den Gleichstrom ähnliche Lösungen des gekoppelten Gleichungssystems, die mit den ähnlichen, für die adiabate Verdunstung geltenden Lösungen verglichen werden. Die Berechnung der durch den Stoffübergang beeinflußten Grenzschicht parameter zeigt, daß das Modell der Gegenstromanordnung, bei der sich nichtähnliche Profile entlang der Filmoberfl äche einstellen, für einen möglichen Einsatz in einer Filmverdampfungsbrennkammer am besten geeignet ist.
Theoretical investigation on the binary laminar boundary-layer flow along a vaporizing liquid layer at non-adiabatic evaporation
For clarification the physical process in the evaporating part of a film-evaporation combustion-chamber in addition to the adiabatic evaporation the case of a one-sided wet plate in co- and counter-current hot air flow is presented. The boundary-layer equations for both streams are solved simultaneously with an implicit finite-difference method taking into account variable fluid properties. Thereby the similar solutions obtained for the co-current flow are compared with the corresponding similar solutions for the case of the adiabatic evaporation. Contrary to the co-current flow the counter-current flow yields non-similar solutions and the computation of the boundary-layer parameters influenced by the evaporation mass-flow shows, that the model of counter-current flow is best suitable for application in a film-evaporation combustion-chamber.

Bezeichnungen Aj, Bj Abkürzungen in der allg. Differenzen - Cj gleichung (36) - c Massenkonzentration, bezogen auf Gemischmasse - cf Dimensionsloser örtlicher Reibungsbeiwert - cp Spezifische Wärmekapazität - D12 Diffusionskoeffizient - h Enthalpie des Gasgemisches - K1, K2 Abkürzungen in der Gl. (5) - K5, K6 Abkürzungen in der Gl.(22) - L Plattenlänge - M Molmasse - m1 Massenstromdichte, verdunstende Masse je Flächen- und Zeiteinheit - m* Dimensionslose Massenstromdichte, Verdunstungsparameter nach Gl.(32) - m** Örtliche dimensionslose Massenstromdichte nach Gl. (33) - PGr Stellvertretende Größe für die Grenzschicht parameter cf, StT und Stm nach Gl. (34) - p Statischer Druck (=Summe der Partialdrücke) - p1w Sättigungsdruck an der Filmoberfläche - q Wärmestromdichte - r Verdampfungsenthalpie - r 1w * Dimensionslose Verdampfungsenthalpie nachGl.(25) - u Geschwindigkeit in x-Richtung - v Geschwindigkeit in y-Richtung - x Längskoordinate - ¯x Längskoordinate für den Gegenstrom s. Bild 14 - xA Wärmeisolierte Anlaufstrecke s. Bild 14 - x* Dimensionslose Längskoordinate für das Dreipunkt-Differenzenverfahren x*=x/s - y Querkoordinate - y* Normierte Querkoordinate für das Drei punkt-Differenzenverfahren y*=y/s - 1 Dimensionslose Verdrängungsdicke nach Gl.(27) - 2 Dimensionslose Impulsverlustdicke nach Gl.(28) - c Konzentrationsgrenzschichtdicke (y-Wert für =0.99) - s Strömungsgrenzschichtdicke (y-Wert für u/u=0.99) - T Temperaturgrenzschichtdicke (y-Wert für = 0.99) - T Dimensionsloser Wandabstand nach Gl.(37) - Normierte absolute Temperatur (= (T – Tw)/(T – T w) - Wärmeleitfähigkeit - Dynamische Zähigkeit - Kinematische Zähigkeit - Dichte - Schubspannung - Allgemeine abhängige Variable (s. Tabelle 1) Normierte Massenkonzentration (=(c1–c1w/(c1–c1w)) - Nu Nußelt-Zahl (= L(T/yT/y)w/(T–Tw)) - Pr Prandtl-Zahl (=cp/) - Rex Reynolds-Zahl (=ux/) - ReL Reynolds-Zahl (=uL/) - Res Reynolds-Zahl (= us/) - Sc Schmidt-Zahl (=/D12) - Stm Stanton-Zahl des Stoffübergangs nach Gl.(31) - StT Stanton-Zahl des Wärmeübergangs nach Gl.(30) Indizes 0 Bezogen auf Strömung ohne Stoffübergang - 1 Gas 1 (Benzoldampf) - 2 Gas 2 (Luft) - Ungestörter Anströmzustand der Luft - ad Charakteristische Werte des adiabaten Strömungsfalles - Geg Charakteristische Werte des Gegenstroms - Gl Charakteristische Werte des Gleichstroms - j Diskreter Punkt in y-Richtung - k Diskreter Punkt in x-Richtung - w Werte an der Plattenoberfläche - + Werte an der benetzten Plattenoberseite - – Werte an der trockenen Plattenunterseite Auszug aus der von der Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität Braunschweig zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation über Theoretische Untersuchung der laminaren Zweistoffgrenzschichtströmung längs einer benetzten, ebenen Platte bei nichtadiabater Verdunstung des Diplom-Ingenieurs Klaus Pientka. Berichterstatter: Prof. Dr. phil. Dr.-Ing. E.h. H. Schlichting und Prof. Dr.-Ing. D. Hummel. - Die Dissertation wurde am 14 Juni 1976 bei der Technischen Universität eingereicht. Die mündliche Prüfung fand am 23. November 1976 statt.  相似文献   

17.
Zusammenfassung Für die Kreiszylinderschale wurde eine Biegetheorie aufgestellt, in der die Gleichgewichtsbedingungen (unter Voraussetzung der Symmetrie des Momententensors M ik ) durch drei Spannungsfunktionen 1, 2, 3 exakt erfüllt sind. Bei der Definition der Deformationsgrößen und der Einführung der Elastizitätsgesetze war die Reißner-Meißnersche Theorie der symmetrisch belasteten Rotationsschale das Vorbild. Die drei Differentialgleichungen für die Verschiebungen 1 2, 3 unterscheiden sich von den drei Differentialgleichungen für die Spannungsfunktionen 1, 2, 3 formal nur im Vorzeichen der Poissonschen Querkontraktionsziffer v. Die beiden Differentialgleichungen achter Ordnung, die man nach Eliminationsprozessen sowohl für 3 als auch für 3 erhält, unterscheiden sich nicht mehr voneinander. So trifft man bei der Zylinderschale die Timpe-Wieghardtsche Analogie zwischen Durchbiegung 3 der Platte und Airyscher Spannungsfunktion 3 der Scheibe wieder.Es konnte ferner gezeigt werden, daß unsere neue Biegetheorie der bekannten Flüggeschen Theorie an Genauigkeit nicht nachsteht.Es ist wohl nicht zu bezweifeln, daß auch bei Schalen beliebiger Gestalt unsere Analogie vorhanden ist. Sie scheint uns wertvoll als Ordnungsprinzip inmitten der Fülle von Gleichungen, die nun einmal zu einer Schalentheorie gehören.Die Formulierung des Schalenproblems mit Hilfe der drei Spannungsfunktionen 1, 2, 3 wird sich immer dann empfehlen, wenn die Randbelastung vorgegeben ist. Denn dann lassen sich die Randbedingungen in den Spannungsfunktionen übersichtlicher formulieren als in den Verschiebungen. Auch die Gewißheit, daß selbst durch radikales Streichen lästiger Glieder in den Differentialgleichungen der Spannungsfunktionen die Gleichgewichtsbedingungen nicht verletzt werden, mag manchem Rechner angenehm sein.  相似文献   

18.
An experimental investigation is made to study the flow characteristics of slot jet impingement on a cylinder. The velocity profiles and pressure distribution around the cylinder are reported for various parameters namely, the flow rate, width of the nozzle, distance of the cylinder from the jet exit and eccentricity of the cylinder to the jet axis.
Experimentelle Untersuchung über die Strömungseigenschaften eines Düsenstrahls, der auf einen Zylinder aufprallt
Zusammenfassung Es wurde eine experimentelle Untersuchung gemacht, um die Strömungseigenschaften eines Düsenstrahls zu unterschen, der auf einen Zylinder prallt. Die Geschwindigkeitsprofile und die Druckverteilungen an dem Zylinder wurden für unterschiedliche Parameter dokumentiert. Die Parameter sind die Strömungsgeschwindigkeit, Düsengröße, Abstand zwischen Zylinder und Strahlaustritt und die Exzentrizität von Zylinder und Strahlachse.

Nomenclature B breadth of the nozzle at the exit - D diameter of the cylinder - C p pressure coefficient - g acceleration due to gravity - L distance of the cylinder from jet exit - P a atmospheric pressure - P c static pressure along the jet center-line - P 0 stagnation pressure - P W wall static pressure - Re D Reynolds numberu j D/ a - Re W Reynolds numberu j W/ a - r distance measured from cylinder surface in radial direction - r m position of maximum velocity from cylinder surface - r 0.5 half width of the jet - u mean velocity - u j mean velocity at the jet exit - u m maximum velocity - W width of the nozzle - a density of air - m density of mercury - w density of water - absolute viscosity - kinematic viscosity  相似文献   

19.
In the present paper magnetohydrodynamic models are employed to investigate the stability of an inhomogeneous magnetic plasma with respect to perturbations in which the electric field may be regarded as a potential field (rot E 0). A hydrodynamic model, actually an extension of the well-known Chew-Goldberg er-Low model [1], is used to investigate motions transverse to a strong magnetic field in a collisionless plasma. The total viscous stress tensor is given; this includes, together with magnetic viscosity, the so-called inertial viscosity.Ordinary two-fluid hydrodynamics is used in the case of strong collisions=. It is shown that the collisional viscosity leads to flute-type instability in the case when, collisions being neglected, the flute mode is stabilized by a finite Larmor radius. A treatment is also given of the case when epithermal high-frequency oscillations (not leading immediately to anomalous diffusion) cause instability in the low-frequency (drift) oscillations in a manner similar to the collisional electron viscosity, leading to anomalous diffusion.Notation f particle distribution function - E electric field component - H0 magnetic field - density - V particle velocity - e charge - m, M electron and ion mass - i, e ion and electron cyclotron frequencies - viscous stress tensor - P pressure - ri Larmor radius - P pressure tensor - t time - frequency - T temperature - collision frequency - collision time - j current density - i, e ion and electron drift frequencies - kx, ky, kz wave-vector components - n0 particle density - g acceleration due to gravity. The authors are grateful to A. A. Galeev for valuable discussion.  相似文献   

20.
Zusammenfassung Im Bereich des abgeschlossenen Einlaufs eines Rechteckkanals wird bei erzwungener turbulenter Konvektion das Strömungsfeld und das Temperaturfeld berechnet. Die Analyse behandelt die Einflüsse der Richtungsabhängigkeit der turbulenten Austauschgrößen und der infolge der Anisotropie der Turbulenz existierenden Sekundärströmung auf die axiale Komponente des Strömungsfeldes und auf das Temperaturfeld. Die thermischen Effekte der Kanalwand sowie Wärmetransport durch Leitung und Temperaturstrahlung werden berücksichtigt. Die Analyse zeigt, daß nur eine einzige Drehung der Sekundärströmung innerhalb eines TrapezSymmetrieelementes des Rechteckkanals existiert. Die Sekundäreffekte bewirken, daß bei einseitiger oder zweiseitig gegenüberliegender Beheizung die maximale Wandtemperatur von der Kanal ecke zur Mitte der beheizten Wand verschoben wird.
An analytical study of momentum and heat transfer on turbulent forced convection in rectangular channels with allowance for secondary effects
A theoretical study was performed to investigate turbulent forced-convective momentum and heat transport in a rectangular channel under fully developed flow and heat transfer conditions. Main emphasis has been devoted to analyse the effects of the anisotropic turbulent transport properties and the turbulence-induced secondary flow on the main flow field and the temperature distribution. The effects of peripheral wall conduction as well as radiation within the channel are included in the analysis. The analysis reveals that only a single secondary current occurs in the trapezoidal symmetry element of the rectangular duct. Furthermore, when the heating extends over one or two oppositely located sides only, the location of the maximum wall temperature is shifted from the corner to the center of the wall.

Formelzeichen ai halbe Seitenlänge des Kanals (i=2,3), a2a3 - a Funktion - D Durchmesser - e Basis des natürlichen Logarithmus - L turbulentes Längenmaß - 1 normiertes turbulentes Längenmaß, L/RH - In natürlicher Logarithmus - Nu Nusselt-Zahl - Pe Péclet-Zahl - p Funktion - Q zugeführte Wärme - qi Wärmefluß (i=1, 2, 3) - R Radius - Re Reynolds-Zahl - Sf Stefan-Zahl - T Temperatur - U Umfang - ui normierte Geschwindigkeit wi/wm, (i=1, 2, 3) - W Strahlungsfluß - W Wandstärke des Kanals - wi Geschwindigkeit (i=1, 2, 3) - w Schubspannungsgeschwindigkeit an der Wand - xi kartesische Koordinaten (i=1, 2, 3) - y i + normierter Wandabstand, (¦ai – x)/RH (i=2, 3) - i normierte halbe Seitenlänge des Kanals, 2=(1 + a2/a3)/2, 3=(1 + a3/a2)/2 - i Emissionskoeffizient der Strahlung - ijkl turbulenter Austauschtensor für Impuls - qij turbulenter Austauschtensor für Wärme - normierte Temperatur, (T – Tm)F/(QWDH) - Wandleitungsparameter, Ww/RHF - Wärmeleitfähigkeit - kinematische Viskosität - i normierte kartesische Koordinaten, xi/RH (i=1, 2, 3) - Dichte - Stefan-Boltzmann-Strahlungskonstante - W Wandschubspannung - Turbulenzparameter, wmRH/ - Stromfunktion - i normierter Wirbelvektor, ijkuk/i Indizes und Überschreibungen a, b Bezeichnung von Flächenelementen - CL Kanalmitte - B Buleev - F Fluid - H hydraulisch - K Kanal - l laminar - m mittel - O Ort, an dem die Turbulenzkorrelation berechnet wird - q Wärme - t turbulent - w Wand - Impuls - - turbulenter Mittelwert - turbulente Fluktuation - pro Längeneinheit - · pro Zeiteinheit Teil der vom Fachbereich für Verfahrenstechnik der Technischen Universität Berlin genehmigten Dissertation des Verfassers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号