首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We elaborate on the distinction between geometric and dynamical phase in quantum theory and we show that the former is intrinsically linked to the quantum mechanical probabilistic structure. In particular, we examine the appearance of the Berry phase in the consistent histories scheme and establish that it is the basic building block of the decoherence functional. These results are consequences of the novel temporal structure of histories-based theories.  相似文献   

2.
A recent claim by Bassi and Ghirardi that the consistent (decoherent) histories approach cannot provide a realistic interpretation of quantum theory is shown to be based upon a misunderstanding of the single-framework rule: they have replaced the correct rule with a principle which directly contradicts it. It is their assumptions, not those of the consistent histories approach, which lead to a logical contradiction.  相似文献   

3.
4.
We reconsider the decoherent histories approach to quantum mechanics and analyze some problems related to its interpretation which we believe have not been adequately clarified by its proponents. We put forward some assumptions which, in our opinion, are necessary for a realistic interpretation of the probabilities that the formalism attaches to decoherent histories. We prove that such assumptions, unless one limits the set of the decoherent families which can be taken into account, lead to a logical contradiction. The line of reasoning we follow is conceptually different from other arguments which have been presented and which have been rejected by the supporters of the decoherent histories approach. The conclusion is that the decoherent histories approach, to be considered as an interesting realistic alternative to the orthodox interpretation of quantum mechanics, requires the identification of a mathematically precise criterion to characterize an appropriate set of decoherent families which does not give rise to any problem.  相似文献   

5.
We review the consistent histories formulations of quantum mechanics developed by Griffiths, Omnès, and Gell-Mann and Hartle, and describe the classification of consistent sets. We illustrate some general features of consistent sets by a few simple lemmas and examples. We consider various interpretations of the formalism, and examine the new problems which arise in reconstructing the past and predicting the future. It is shown that Omnès' characterization of true statements—statements which can be deduced unconditionally in his interpretation—is incorrect. We examine critically Gell-Mann and Hartle's interpretation of the formalism, and in particular their discussions of communication, prediction, and retrodiction, and conclude that their explanation of the apparent persistence of quasiclassicality relies on assumptions about an as-yetunknown theory of experience. Our overall conclusion is that the consistent histories approach illustrates the need to supplement quantum mechanics by some selection principle in order to produce a fundamental theory capable of unconditional predictions.  相似文献   

6.
We argue that the complex numbers are an irreducible object of quantum probability: this can be seen in the measurements of geometric phases that have no classical probabilistic analogue. Having the complex phases as primitive ingredient implies that we need to accept nonadditive probabilities. This has the desirable consequence of removing constraints of standard theorems about the possibility of describing quantum theory with commutative variables. Motivated by the formalism of consistent histories and keeping an analogy with the theory of stochastic processes, we develop a (statistical) theory of quantum processes: they are characterized by the introduction of a density matrix on phase space paths (it thus includes phase information) and fully reproduces quantum mechanical predictions. We can write quantum differential equations (in analogy to Langevin equation) that could be interpreted as referring to individual quantum systems. We describe the reconstruction theorem by which a quantum process can yield the standard Hilbert space structure if the Markov property is imposed. We discuss the relevance of our results for the interpretation of quantum theory (a sample space is possible if probabilities are nonadditive) and quantum gravity (the Hilbert space arises here after the consideration of a background causal structure).  相似文献   

7.
8.
We attempt a justification of a generalisation of the consistent histories programme using a notion of probability that is valid for all complete sets of history propositions. This consists of introducing Cox's axioms of probability theory and showing that our candidate notion of probability obeys them. We also give a generalisation of Bayes' theorem and comment upon how Bayesianism should be useful for the quantum gravity/cosmology programmes. PACS: 02.50.Cw;03.65.Ta;04.60.-m.  相似文献   

9.
Pawel Blasiak 《Physics letters. A》2010,374(48):4808-4813
Non-commutativity is ubiquitous in mathematical modeling of reality and in many cases same algebraic structures are implemented in different situations. Here we consider the canonical commutation relation of quantum theory and discuss a simple urn model of the latter. It is shown that enumeration of urn histories provides a faithful realization of the Heisenberg-Weyl algebra. Drawing on this analogy we demonstrate how the operator normal forms facilitate counting of histories via generating functions, which in turn yields an intuitive combinatorial picture of the ordering procedure itself.  相似文献   

10.
We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider the arrival time problem, as a warm up, to deal with the problem of time in reparametrization invariant theories (as for example in canonical quantum gravity) which subsequently we examine. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related to our results, is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem and the problem of time in general.  相似文献   

11.
12.
A distinction is made among consistent histories in general, and those that are robustly consistent, and finally those that are classically verifiable. In the case of an individual system, the Copenhagen view would regard only its verifiable history to have actually taken place. We analyze the consequences if instead one associates reality with a finer and yet robust history. There are distinct disadvantages. In general one should probabilistically sum over the fine-grained consistent histories, even when the events have already happened.  相似文献   

13.
The tomographic histories approach is presented. As an inverse problem, we recover in an operational way the effective topology of the extended configuration space of a system. This means that from a series of experiments we get a set of points corresponding to events. The difference between effective and actual topology is drawn. We deduce the topology of the extended configuration space of a non-relativistic system, using certain concepts from the consistent histories approach to Quantum Mechanics, such as the notion of a record. A few remarks about the case of a relativistic system, preparing the ground for a forthcoming paper sequel to this, are made in the end.  相似文献   

14.
In this work a generalization of the consistent histories approach to quantum mechanics is presented. We first critically review the consistent histories approach to nonrelativistic quantum mechanics in a mathematically rigorous way and give some general comments about it. We investigate to what extent the consistent histories scheme is compatible with the results of the operational formulation of quantum mechanics. According to the operational approach, nonrelativistic quantum mechanics is most generally formulated in terms of effects, states, and operations. We formulate a generalized consistent histories theory using the concepts and the terminology which have proven useful in the operational formulation of quantum mechanics. The logical rule of the logical interpretation of quantum mechanics is generalized to the present context. The algebraic structure of the generalized theory is studied in detail.  相似文献   

15.
It is shown that a particular kind of Bell inequality is associated with a decoherent set of histories in the Gell-Mann-Hartle sense. A special case is studied and the Gell-Mann-Hartle and QMSL schemes are confronted.  相似文献   

16.
17.
We illustrate the crucial role played by decoherence (consistency of quantum histories) in extracting consistent quantum probabilities for alternative histories in quantum cosmology. Specifically, within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model sourced with a free massless scalar field, we calculate the probability that the universe is singular in the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expanding and contracting singular branches. A naive assessment of the behavior of quantum states which are superpositions of expanding and contracting universes suggests that a “quantum bounce” is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical solution throughout its history. However, a more careful consistent histories analysis shows that for arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum universe encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt universe is inevitably singular, and a “quantum bounce” is thus not possible in these models.  相似文献   

18.
19.
The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology is that decoherence requires subsystems, and cosmology is the study of the whole Universe. Consistent histories gave a possible answer to this conundrum, by phrasing decoherence as loss of interference between alternative histories of closed systems. When one can apply Boolean logic to a set of histories, it is deemed ‘consistent’. However, the vast majority of the sets of histories that are merely consistent are blatantly nonclassical in other respects, and further constraints than just consistency need to be invoked. In this paper, I attempt to give an alternative answer to the issues faced by consistent histories, by exploring a timeless interpretation of quantum mechanics of closed systems. This is done solely in terms of path integrals in non-relativistic, timeless, configuration space. What prompts a fresh look at such foundational problems in this context is the advent of multiple gravitational models in which Lorentz symmetry is not fundamental, but only emergent. And what allows this approach to overcome previous barriers to a timeless, conditional probabilities interpretation of quantum mechanics is the new notion of records—made possible by an inherent asymmetry of configuration space. I outline and explore consequences of this approach for foundational issues of quantum mechanics, such as the natural emergence of the Born rule, conservation of probabilities, and the Sleeping Beauty paradox.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号