首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon electrodes are a key factor for electric double layer capacitors (EDLCs). Carbon gels have high porosity with a controllable pore structure by changing synthesis conditions and modifying preparation processing to improve the electrochemical performance of EDLCs. This review summarizes the preparation of carbon gels and their derivatives, the criteria to synthesize high surface area in each process, the development by some carbon forms, and EDLC applications. Porous carbons are also prepared as model materials by concentrating on how pore structure increases electrochemical capacitance, such as electronic and ion resistance, the tortuosity of pore channel, suitable micropore and mesopore sizes, and mesopore size distribution. This review emphasizes the significance of pore structures as the key factor to allow for the design of suitable pore structures that are suitable as the carbon electrode for EDLCs.  相似文献   

2.
The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.  相似文献   

3.
电解液离子与炭电极双电层电容的关系   总被引:3,自引:0,他引:3  
以酚醛树脂基纳米孔玻态炭(NPGC)为电极, 通过微分电容伏安曲线的测试, 研究了水相体系电解液离子与多孔炭电极双电层电容的关系. 结果表明, 稀溶液中, 多孔炭电极的微分电容曲线在零电荷点(PZC)处呈现凹点, 电容降低, 双电层电容受扩散层的影响显著;若孔径小, 离子内扩散阻力大, 电容下降更为迅速, 扩散层对双电层电容的影响增大. 而增大炭材料的孔径或电解液浓度, 可明显减弱甚至消除扩散层对电容的影响. 炭电极的单位面积微分电容高, 仅表明孔表面利用率高, 如欲获得高的电容量, 还要有大的比表面积. 离子水化对炭电极的电容产生不利影响, 选用大离子和增大炭材料的孔径, 可有效降低离子水化对炭电极电容性能的影响.  相似文献   

4.
新型活性炭材料在双电层电容器中的应用研究   总被引:6,自引:1,他引:5  
以椰壳为原料,利用特定的物理 化学方法在一定条件下制得双电层电容器活性炭电极材料.实验表明,该活性炭经压制成型后制作的双电层电容器,具有大的比电容,文中同时研究了酸处理、二次活化以及电极冷压成型方法对电极性能的影响.  相似文献   

5.
酚醛基活性炭纤维孔结构及其电化学性能研究   总被引:8,自引:0,他引:8  
利用水蒸汽活化法制备了酚醛基活性炭纤维(ACF-H2O), 对其比表面积、孔结构与在LiClO4/PC(聚碳酸丙烯酯)有机电解液中的电容性能之间的关系进行了探讨. 用N2(77 K)吸附法测定活性炭纤维的孔结构和比表面积, 用恒流充放电法和交流阻抗技术测量双电层电容器(EDLC)的电容量及内部阻抗. 研究表明, 在LiClO4/PC有机电解液中, ACF-H2O电极的可用孔径(d)应在0.7 nm以上. 随着活化时间的延长, ACF-H2O的孔容和比表面不断增大, 但微孔(0.7 nm < d < 2.0 nm)和中孔(d > 2.0 nm)率变化很小, 活化过程中孔的延伸和拓宽同步进行, 但过度活化则造成孔壁塌陷, 孔容和比表面迅速下降. 因此, 除活化过度的样品外, 电容量随比表面积呈线性增长, 最高达到109. 6 F•g-1. 但中孔和微孔的孔表面对电容的贡献不同, 其单位面积电容分别为8.44 μF•cm-2和4.29 μF•cm-2, 中孔具有更高的表面利用率. ACF-H2O电极的电容量、阻抗特性和孔结构密切相关. 随着孔径的增大, 时间常数减小, 电解液离子更易于向孔内快速迁移, 阻抗降低, 电极具有更好的充放电倍率特性. 因此, 提高孔径和比表面积, 减少超微孔(d < 0.7 nm), 是提高 EDLC能量密度和功率密度的重要途径. 然而仅采用水蒸汽活化, 只能在小中孔以下的孔径范围内进行调孔, ACF-H2O电极电容性能的提高受限.  相似文献   

6.
Supercapacitors store electrical energy by ion adsorption at the interface of the electrode‐electrolyte (electric double layer capacitance, EDLC) or through faradaic process involving direct transfer of electrons via oxidation/reduction reactions at one electrode to the other (pseudocapacitance). The present minireview describes the recent developments and progress of carbon‐transition metal oxides (C‐TMO) hybrid materials that show great promise as an efficient electrode towards supercapacitors among various material types. The review describes the synthetic methods and electrode preparation techniques along with the changes in the physical and chemical properties of each component in the hybrid materials. The critical factors in deriving both EDLC and pseudocapacitance storage mechanisms are also identified in the hope of pointing to the successful hybrid design principles. For example, a robust carbon‐metal oxide interaction was identified as most important in facilitating the charge transfer process and activating high energy storage mechanism, and thus methodologies to establish a strong carbon‐metal oxide contact are discussed. Finally, this article concludes with suggestions for the future development of the fabrication of high‐performance C‐TMO hybrid supercapacitor electrodes.  相似文献   

7.
The development of high-performance supercapacitor electrode materials is imperative to alleviate the ongoing energy crisis. Numerous transition metals (oxides) have been studied as electrode materials for supercapacitors owing to their low cost, environmental-friendliness, and excellent electrochemical performance. Among the developed binary transition metal oxides, manganese cobalt oxides typically show high theoretical capacitance and stable electrochemical performance, and are widely used in the electrode materials of supercapacitors. However, the poor conductivity and active material utilization of manganese cobalt oxide-based electrode materials limit their potential capacitance application. Cotton is mainly composed of organic carbon-containing materials, which can be transformed to carbon fibers after calcination. The resultant carbonaceous material exhibits a large specific surface area and good conductivity. Such advantages could potentially suppress the negative effects caused by the poor conductivity and small specific surface area of manganese cobalt oxides, thereby improving the electrochemical performance. Herein, we firstly deposited manganese cobalt oxides on cotton by a simple hydrothermal method, yielding a composite of manganese cobalt oxides and carbon fibers via subsequent calcination, to improve the electrochemical performance of the electrode material. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and electrochemical characterizations were used to investigate the physical, chemical, and electrochemical properties of the prepared samples. The fabricated manganese cobalt oxides in the composite were uniformly dispersed on the carbon fiber surface, which increased the contact between the interface of the electrode material and electrolyte, and enhanced electrode material utilization. The electrode material was confirmed to have well contacted with the electrolyte during a contact angle test. Hence, a pseudo-capacitance reaction completely occurred on the manganese cobalt oxide material. Moreover, the addition of carbon fibers reduced the resistance of the material, resulting in excellent capacitive performance. The capacitance of the prepared composite was 854 F∙g-1 at a current density of 2 A∙g-1. The capacitance was maintained at 72.3% after 2000 cycles at a current density of 2 A∙g-1. These results indicate that the manganese cobalt oxide and carbon fiber composite is a promising electrode material for high-performance supercapacitors. The findings presented herein provide a strategy for coupling with carbon materials to enhance the performance of supercapacitor electrode materials based on manganese cobalt oxides. Thus, novel insights into the design of high-performance supercapacitors for energy management are provided.  相似文献   

8.
植物基多孔炭具有发达的孔结构、大的表面积、较为成熟的制备工艺、丰富的来源、低廉的价格,是目前商业应用范围最广的超级电容器电极材料。然而在实际应用中仍然存在着质量/体积比容量较低、倍率性能差等问题。本文针对先进电容器件的高能量密度、优异功率性能的要求,首先介绍了近年来发展的植物基多孔炭的制备方法,讨论了植物前驱体的组成和结构对其产物结构的影响以及与其电化学性能之间的构效关系,特别总结了近年来植物基超大比表面积多孔炭、中孔炭、层次化多孔炭的制备方法和电容储能性能。针对大比表面积多孔炭用于超级电容器时的体积性能不佳这一关键问题,本文还总结了提高植物基多孔炭体积电化学性能的方法。最后,对植物基多孔电极材料存在的问题进行了分析与总结,并展望了其研究前景。  相似文献   

9.
The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of nitrogen‐doped mesoporous carbon spheres (NMCs) was synthesized via a facile dual soft‐templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro)chemical properties of the NMCs have been comprehensively investigated to pave the way for a feasible design of nitrogen‐containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by a high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity, and high nitrogen content, which make it a highly efficient ORR metal‐free catalyst in alkaline solutions.  相似文献   

10.
以无灰煤(HyperCoal)为原料,KOH和CaCO3为活化剂制备了煤基活性炭,采用低温N2吸附法表征了活性炭的比表面积和孔结构,测定了活性炭用作双电层电容器(EDLC)电极材料的电化学性能。考察了炭化温度、活化温度、活化时间和活化剂对活性炭电容特性的影响。研究结果表明,比表面积和比电容随着炭化温度的升高而降低,活化温度过高或活化时间太长对比电容有不利影响。此外,CaCO3影响活化过程中孔的开发,显著降低所制备活性炭的比表面积和比电容。在炭化温度为500℃、活化温度为800℃、KOH与焦的质量比为4∶1和活化时间2 h下所得活性炭的比表面积和总孔容分别达到2 540 m2/g和1.65 cm3/g,该活性炭电极在0.5 mol/L TEABF4/PC电解液中的比电容达到最大值46.0 F/g。  相似文献   

11.
超级电容器寿命长,安全性高,并可以实现快速充放电,是化学电源研究的热点之一。然而,超级电容器的能量密度较低限制了其更多的应用。因此,超级电容器领域的研究关注点在如何提高超级电容器的能量密度。其中,提高比容量是提高能量密度的一种有效途径。本文通过对电极材料和电解液的优化来研究制备得到高容量超级电容器的方法。电极材料的比表面积、孔道结构和导电性对其电化学性能有着直接的影响。一方面,通过优化电极材料的孔道结构和比表面积可以增加活性位点并提高电解液离子传导率,从而得到高比电容。另一方面,电极材料导电性的提高有利于提升其电子传导率从而得到较高的比容量。本文分别对碳材料和金属氧化物/氢氧化物的优化达到了增加双电层电容和赝电容的目的。不仅如此,还可以通过在电解液中增加氧化还原电对从而得到高比电容。这一方法为高容量超级电容器的制备提供了新的思路。  相似文献   

12.
多孔碳材料由于高的比表面积、优异的电子传导率、良好的化学稳定性等优点在超级电容器电极材料领域被广泛研究。 碳材料的组成及表面孔结构直接影响其电化学性能,为进一步提高碳材料的电容性能,本文首次以聚多巴胺球为前体,KOH为活化剂,通过高温碳化成功制备了良好电化学性能的氮掺杂多孔碳材料。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和Raman光谱等对所制备的氮掺杂多孔碳材料进行了形貌及结构组成的表征。 在6 mol/L KOH电解液中, 采用循环伏安、恒电流充放电对多孔碳材料的电化学性能进行了研究。 结果表明,由于双电层电容和赝电容的协同作用,在电流密度为1 A/g时,材料的比电容可达269 F/g,充放电循环1000圈后电容仍可保留初始值的93.5%。  相似文献   

13.
电化学双电层电容器用新型炭材料及其应用前景   总被引:4,自引:0,他引:4  
张浩  曹高萍  杨裕生  徐斌  张文峰 《化学进展》2008,20(10):1495-1500
活性炭是目前使用最为广泛的一种电化学双电层电容器(EDLC)的电极材料,但其固有的缺点制约了EDLC性能的进一步提高。用新型高性能炭电极材料可使EDLC比能量和比功率性能进一步提高。这些新型炭材料包括基于石墨层状结构的纳米门炭,基于碳纳米管阵列结构的毛皮炭,通过高温置换反应制备的骨架炭以及电极可整体成型的纳米孔玻态炭。本文介绍了这些炭材料的电化学特性及其在电化学双电层电容器中的应用,指出用这4种新型炭材料制备EDLC的比能量或比功率性能远高于目前活性炭基EDLC,具有良好的应用前景。  相似文献   

14.
A kind of mesoporous carbon spheres (MCS) containing in-frame incorporated nitrogen has been prepared by a facile polymerization-induced colloid aggregation method. As the electrode material for electric double layer capacitor (EDLC) in 5 mol/L H2SO4, the MCS products present excellent specific capacitance as 211 F/g much larger than that of the most popularly applied activated carbon at a high discharge current density of 1 A/g. Its specific capacitance can still remain 200 F/g at 20 A/g. The superior electrochemical performance of MCS is associated with the following characteristics: high specific surface area (∼1330 m2/g) contributed mainly by the mesopores, uniform pore size as large as 29 nm and moderate content of nitrogen (10 wt%), which are the requirements for ideal supercapacitors.  相似文献   

15.
碳基双电层电容器的结构、机理及研究进展   总被引:8,自引:0,他引:8  
孟庆函  李开喜  凌立成 《化学通报》2001,64(11):680-685
活性炭基双电层电容器是一种新型电化学能量储存装置,其储电机理是利用电极材料比较大的比表面积在电极和电解液之间形成双电层储存电荷,充放电过程中无化学反应发生。活性炭材料由于具有较大的比表面积、良好的孔结构分布、化学惰性表面等,一直是双电层电容器电极的首选材料。本文简要介绍了双电层电容器的制造工艺、应用及发展趋势。  相似文献   

16.
对高性能超级电容器不断增长的需求促进了无粘合剂电极材料的快速发展。静电纺纳米纤维由于具有良好的柔性、大比表面积、高孔隙率、容易制备等优点引起了研究者们的强烈关注。本文综述了静电纺纳米纤维基无粘合剂电极材料在超级电容器领域的研究进展,阐述了不同材料的设计制备过程和提升电化学性能的诸多方法,并指明了静电纺纳米纤维基超级电容器无粘合剂电极材料的发展机遇与挑战,为性能优异的无粘合剂超级电容器电极材料的进一步开发与应用拓宽了思路。  相似文献   

17.
Carbon‐based electrochemical double‐layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudo‐capacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6‐tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudo‐capacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg?1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs.  相似文献   

18.
Pitch-based carbon fibers (PCFs) were fabricated using a melt-electrospinning method and used as a gas sensor electrode for nitric oxide (NO). The PCFs were modified through different heat-treatment temperatures (1,000, 1,650, and 2,300 °C) and activation conditions (2, 4, and 6 M KOH solutions) to investigate the effect of these processes on the structure and surface functionalities of the resultant fiber samples. Field emission scanning electron microscopy, elemental analyzer, Raman spectroscopy, and pore analysis techniques were then employed to characterize the prepared samples. As a result of these modifications, the porosity and electrical conductivity of the prepared PCFs increased, which resulted in enlarged gas adsorption sites and an improved electron transfer. The improved porosity of the PCFs was attributed to the chemical activation process, whereas the enhanced electrical conductivity was also attributed to higher heat-treatment temperature. The sensing ability of the PCFs for NO-gas was thus significantly improved based on the effects of the chemical activation and higher heat-treatment temperatures. The performance of these PCFs as an NO-gas sensor system suggests promising application of carbon fibers as a novel and highly efficient NO-gas sensing material.  相似文献   

19.
The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors(EDLCs) with organic electrolyte was studied. The re-acivation of AC results in the increases in both specific capacitance and high rate capability of DELCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly.The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.  相似文献   

20.
电化学阻抗谱(EIS)是一种很有用的研究电化学性能的技术. 理想的双电层电容器(EDLC)阻抗谱的尼奎斯特图由中高频的45°线和低频的与实轴垂直的直线组成, 可以用孔径分布-传输线模型来解释. 然而, 在研究工作中还发现, 在阻抗谱的高频区出现了半圆弧区域, 为此, 提出的等效模型认为半圆弧可以归因于活性材料之间的接触电阻和接触电容, 以及电极与集流体之间的接触电阻与接触电容. 还研究了充电过程、活性炭和电解液的电导率、导电添加剂和粘结剂的含量、隔膜、活性物质附载量和极片加压等因素对阻抗谱的影响. 其中, 充电截止电压、活性炭的电导率、导电添加剂的含量和极片加压对半圆弧部分影响较为显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号