首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Mass spectrometers that use different types of analyzers for the first and second stages of mass analysis in tandem mass spectrometry (MS/MS) experiments are often referred to as "hybrid" mass spectrometers. The general goal in the design of a hybrid instrument is to combine different performance characteristics offered by various types of analyzers into one mass spectrometer. These performance characteristics may include mass resolving power, the ion kinetic energy for collision-induced dissociation, and speed of analysis. This paper provides a review of the development of hybrid instruments over the last 30 years for analytical applications.  相似文献   

2.
With the emergence of top-down proteomics, the ability to achieve high mass measurement accuracy on tandem MS/MS data will be beneficial for protein identification and characterization. (FT-ICR) Fourier transform ion cyclotron resonance mass spectrometers are the ideal instruments to perform these experiments with their ability to provide high resolution and mass accuracy. A major limitation to mass measurement accuracy in FT-ICR instruments arises from the occurrence of space charge effects. These space charge effects shift the cyclotron frequency of the ions, which compromises the mass measurement accuracy. While several methods have been developed that correct these space charge effects, they have limitations when applied to MS/MS experiments. It has already been shown that additional information inherent in electrospray spectra can be used for improved mass measurement accuracy with the use of a computer algorithm called DeCAL (deconvolution of Coulombic affected linearity). This paper highlights a new application of the strategy for improved mass accuracy in tandem mass analysis. The results show a significant improvement in mass measurement accuracy on complex electron capture dissociation spectra of proteins. We also demonstrate how the improvement in mass accuracy can increase the confidence in protein identification from the fragment masses of proteins acquired in MS/MS experiments.  相似文献   

3.
4.
For a single peak, mass spectral resolution can be expressed in terms of peak width or ratio of peak position to peak width. Alternatively, for two equally intense peaks of equal width, resolution can be defined as the minimum peak separation such that the height of the valley between the combined peaks is less than a specified ratio (1%, 10%, 50%, 100%) of the individual (or combined) peak maximum. All these definitions depend on peak shape. Conversion formulae between various mass resolution criteria are presented for each of eight spectral peak shapes: Gaussian, triangular, trapezoidal, Lorentzian (absorption-mode, magnitude-mode, and sine-apodized magnitude-mode), and sinc (absorption-mode and magnitude-mode). From these formulae, mass resolutions based upon different criteria are readily compared for the same or different line shapes.  相似文献   

5.
Stepwise-external calibration has previously been shown to produce sub part-per-million (ppm) mass accuracy for the MALDI-FTICR/MS analyses of peptides up to m/z 2500. The present work extends these results to ions up to m/z 4000. Mass measurement errors for ions of higher mass-to-charge are larger than for ions below m/z 2500 when using conventional chirp excitation to detect ions. Mass accuracy obtained by using stored waveform inverse Fourier transform (SWIFT) excitation was evaluated and compared with chirp excitation. Analysis of measurement errors reveals that SWIFT excitation provides smaller deviations from the calibration equation and better mass accuracy than chirp excitation for a wide mass range and for widely varying ion populations.  相似文献   

6.
7.
By electrospray ionization (ESI) mass spectrometry, micelle solutions of sodium cholate were investigated in detail in the presence and absence of ethanol. The average aggregation number could be evaluated from the spectra acquired under conditions where soft collisions adequate to measure the micelle solution were induced, and the value agreed well with that obtained previously by other methods. From the dependence on ethanol content, it was also found that the average aggregation number in aqueous solution without organic solvent could be reliably estimated. The ESI method proved to be a useful tool for determining the micelle mass in the original aqueous phase.  相似文献   

8.
Common calibration standards for mass spectrometry can be a source of many problems including instrument contamination, ionization suppression and formation of unidentified ions during subsequent analysis. In this article, we present a new approach for the calibration of mass analyzers such as a quadrupole–time‐of‐flight mass spectrometry using a diluted solution of commercial formaldehyde. Formaldehyde is an inexpensive and commonly used solvent, and its intrinsic polymerization leads to the formation of polyoxymethylene (POM) oligomers, which are excellent multiple calibration standards for a low‐mass spectral region (up to m/z 400) in the positive and negative mode of electrospray ionization. We explore the nature and origin of these polymeric species and attributed them to chemical reactions of formaldehyde and stabilizing agents in commercial formaldehyde solutions and during electrospray ionization. In contrast to other calibrants, POM oligomers do not contaminate the instrument and can easily be removed from the sample delivery system. Using tandem mass spectrometry, we elucidate the structures of the detected POM oligomers and report their reference masses, which are tightly spaced by 30 mass units. In our calibration method, mass errors of <5 ppm can be obtained from m/z 20–400 using external calibration with a simple one‐point zero‐order correction of spectral data and without the need for operation of a dual spray or internal calibrants. Our approach will be particularly useful for those interested in the analysis of fragile ions with low m/z values and can function at instrumental conditions required for analysis of the most labile metabolites and environmental contaminants. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
同位素质谱与无机质谱分析   总被引:1,自引:0,他引:1  
孟宪厚 《分析试验室》1991,10(4):167-177,115
本文是《分析试验室》定期评述中“无机质谱分析”课题的第二篇评述文章,它增加了同位素质谱分析的内容,故将题目改为现今题目,它综述了1985年~1990年间同位素质谱和无机质谱的发展概况。其中包括同位素示踪、同位素稀释、火花源质谱、二次离子质谱、等离子体质谱等。内容以国内为主,也收集了少量代表学科先进水平的外国文献。  相似文献   

10.
11.
Low-resolution (2000, 10% valley definition) accurate mass measurements using self-chemical ionization (self-CI) have been evaluated as an alternative to the conventional chemical ionization (CI) method. In conventional CI experiments a high pressure of reagent gas is required to induce ionization while in self-CI no reagent gas is used and the self-CI is produced presumably by molecular/fragment ion–molecule reactions. Nine compounds ranging in mass from 50–500 daltons were examined. Results obtained by the self-CI method indicate that the elemental composition assignment can be obtained simultaneously for the protonated molecule and/or molecular ion. It is also shown that perfluorokerosene can be used routinely in self-CI as an internal reference standard over a broad mass range (50–500 daltons). It is sometimes difficult to use a single reference standard in conventional low-resolution CI accurate mass spectrometry over a similar mass range.  相似文献   

12.
A double quadrupole mass spectrometer has been constructed to study unimolecular and collision-induced dissociation products from mass-selected ions. The two quadrupoles are closely coupled and the dissociation products sampled from a 2.5-mm interquadrupole region. Spectra obtained on the double quadrupole instrument are compared with published data obtained with triple quadrupole and reversed-sector (MIKE) mass spectrometers. The results indicate that the simple double quadrupole spectrometer is a highly efficient device which is a viable alternative to more complex quadrupole or sector instruments for obtaining dissociation spectra of mass-selected ions.  相似文献   

13.
14.
Mass spectrometry is central to shotgun proteomics, an application that seeks to quantify as much of the total protein complement of a biological sample as possible. The high mass accuracy, resolution, capacity and scan rate of modern mass spectrometers have greatly facilitated this endeavor. The sum of MS to MS/MS transitions in tandem mass spectrometry, the spectral count (SC), of a peptide has been shown to be a reliable estimate of its relative abundance. However, when using SCs, optimal MS configurations are crucial in order to maximize the number of low abundant proteins quantified while keeping the estimates for the highly abundant proteins within the linear dynamic range. In this study, LC/MS/MS analysis was performed using an LTQ‐OrbiTrap on a sample containing many highly abundant proteins. Tuning the LTQ‐OrbiTrap mass spectrometer to minimize redundant MS/MS acquisition and to maximize resolution of the proteome by accurately measured m/z ratios resulted in an appreciable increase in quantified low abundant proteins. An exclusion duration of 90 s and an exclusion width of 10 ppm were found best of those tested. The spectral count of individual proteins was found to be highly reproducible and protein abundance ratios were not affected by the different settings that were applied. We conclude that on a high mass accuracy instrument spectral counting is a robust measure of protein abundance even for samples containing many highly abundant proteins and that tuning dynamic exclusion parameters appreciably improves the number of proteins that can be reliably quantified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The application of the fundamental equation for isotopic dilution mass spectrometry to real samples often requires using approximations which can lead to significant errors. A new approach relating the composition of isotopic mixtures to the average mass of the mass spectral pattern is presented. The fundamental equations are completely general; they should be applicable to a wide range of problems and may provide improved accuracy and precision in some cases.  相似文献   

16.
A previously uncharacterized source of detection mass bias is shown to be associated with atmospheric pressure ionization mass spectrometry (APIMS), and is attributed to a mass dependence in the sampling of ions from the supersonic free jet expansion of gas emerging from the ion source. The halide ions Cl ?, Br?, and I? are shown to be transported from the ion source aperture to a quadrupole mass filter with efficiencies that increase linearly with increasing mass of the ion. While the polyatomic anions SF 6 - and C7F 14 - are detected with even greater efficiencies than would be expected for monatomic anions of the same mass, this additional sensitivity to the polyatomic anions is thought to be related to ion loss processes occurring within the ion source. The experimental conditions under which these mass bias effects can be minimized or enhanced in APIMS are described.  相似文献   

17.
Mass defect is defined as the difference between a compound's exact mass and its nominal mass. This concept has been increasingly used in mass spectrometry over the years, mainly due to the growing use of high resolution mass spectrometers capable of exact mass measurements in many application areas in analytical and bioanalytical chemistry. This article is meant as an introduction to the different uses of mass defect in applications using modern MS instrumentation. Visualizing complex mass spectra may be simplified with the concept of Kendrick mass by plotting nominal mass as a function of Kendrick mass defect, based on hydrocarbons subunits, as well as slight variations on this theme. Mass defect filtering of complex MS data has been used for selectively detecting compounds of interest, including drugs and their metabolites or endogenous compounds such as peptides and small molecule metabolites. Several strategies have been applied for labeling analytes with reagents containing unique mass defect features, thus shifting molecules into a less noisy area in the mass spectrum, thus increasing their detectability, especially in the area of proteomics. All these concepts will be covered to introduce the interested reader to the plethora of possibilities of mass defect analysis of high resolution mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy, and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (mm 50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with mm 50%?>?3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.
Figure
C60 secondary ion FT-ICR MS provides unprecedented mass resolving power and mass accuracy for SIMS imaging of biological tissue sections. Overlaid selected ion images from rat brain (left) and high spatial resolution imaging of organic dye underneath a TEM grid (right).  相似文献   

20.
The qualitative and quantitative identification of low mass isotopes in the mass range 1–6 u poses certain difficulties when attempting to achieve the required resolution with an instrument suitable for deployment within a process environment. Certain adjacent species present in the process sample (HT and D2) require a resolution greater than 930 to achieve an accurate measurement. We demonstrate here through simulation techniques that this level of performance required is unachievable using commercially available instruments. Using previously reported simulation techniques, this article demonstrates how the required performance for resolving the low mass isotopes can be achieved by a quadrupole mass spectrometer (QMS), which incorporates a quadrupole mass filter (QMF) constructed from hyperbolic electrodes and operated in zone 3 of the Mathieu stability diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号