首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
No difference in the actual gel points was substantially observed among three isomeric diallyl phthalates such as diallyl phthalate (DAP), diallyl isophthalate, and diallyl terephthalate (DAT); this interesting gelation behavior was discussed further in terms of the correlation between gelation and the difference in cyclization modes, and also, the difference in reactivity between the uncyclized and cyclized radicals for cross‐linking. In the present work, we tried to extend the preceding discussion to the polymerization of triallyl trimellitate (TAT) because the molecular structure of TAT is presumed to essentially involve the characteristics of three isomeric diallyl phthalates and, therefore, the enhanced gelation was expected in TAT polymerization. However, no enhancement of gelation was observed. For a full understanding of the gelation in multiallyl cross‐linking polymerization, we explored further the polymerizations of DAP, DAT, and TAT, especially focusing on the characterization of resultant network polymer precursors (NPPs) using SEC‐MALLS‐viscometry providing the correlation of [η] versus Mw of fractionated samples. Notably, the structure of NPP consisting of oligomeric primary polymer chains generated from specific allyl polymerization would become core‐shell type dendritic with the progress of polymerization. The correlation between delayed gelation and decreased reactivity of dendritic NPP for intermolecular cross‐linking is discussed. Conclusively, the reactivity for intermolecular cross‐linking between NPPs decreased with the progress of polymerization leading to a delayed gelation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2871–2881, 2009  相似文献   

2.
Our previous mechanistic discussion of network formation in chainwise crosslinking multiallyl polymerization was extended to stepwise crosslinking diepoxide/diamine polymerization, typically including bisphenol‐A diglycidyl ether (BADGE) and 4,4′‐diaminodiphenylmethane (DDM). In allyl polymerization a monomer chain transfer is an essential termination reaction, providing only oligomeric primary polymer chains. Therefore, crosslinking multiallyl polymerization could be in the category of a classical gelation theory. Thus, the gelation behavior was discussed by comparing the actual gel point with the theoretical one. Then the resulting network polymer precursors (NPPs) were characterized by size‐exclusion chromatography‐multiangle laser light scattering‐viscometry to clarify the stepwise crosslinking BADGE/DDM polymerization mechanism. Notably, the intrinsic viscosity ratio [η]NPP/[η]Linear tended to decrease with the progress of crosslinking and finally, it reached less than 0.2. This suggests that the structure of resulting NPP becomes dendritic at a conversion close to the gel point. These dendritic NPPs can collide with each other to form crosslinks between NPPs, eventually leading to gelation as a reflection of the high concentration of NPP. The dilution effect on gelation was marked in polar solvent; no gelation was observed at a dilution of 1/5. However, in nonpolar solvent the gelation was promoted by dilution; this is ascribed to enhanced crosslink formation between NPPs through hydrogen bonding due to abundant hydroxyl groups in the NPP generated by the polyaddition reaction. Finally, the subject of “Is cured epoxy resin inhomogeneous?” is briefly discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
As an extension of our continuing studies concerned with the mechanistic discussion of network formation in the free‐radical crosslinking (co)polymerization of multivinyl monomers, this work refers to the skewered reactions in the crosslinking (co)polymerizations of liquid polybutadiene rubber (LBR) as an internal olefinic multivinyl monomer or crosslinker, especially focused on the competitive occurrence of both addition or skewered reaction to internal carbon–carbon (CC) double bonds and abstraction reaction of allylic hydrogens in LBR by growing polymer radical. Thus, LBR is regarded as an internal olefinic multiallyl monomer‐linked allyl groups (? CH?CH? CH2? ) with methylene units (? CH2? ). First, gelation in the polymerization of LBR was explored in detail, especially at elevated temperatures. The occurrence of intermolecular crosslinking was easier in the order LBR > LBR containing 20 mol % of 1,2‐structural units > liquid polyisoprene rubber. Then, we pursued the polymerization of LBR using dicumyl peroxide (DCPO) as typical organic peroxide used at elevated temperatures. The primary cumyloxy radical generated by the thermal decomposition of DCPO may add to CC double bond or abstract allylic hydrogen or undergo β‐scission to generate a secondary methyl radical. The initiation by the cumyloxy radical was omitted. The ratio of allylic hydrogen abstraction to β‐scission reaction was estimated; thus, only 39% of cumyloxy radical was used for the allylic hydrogen abstraction reaction. The addition of methyl radical to CC double bond was clearly observed. Finally, we pursued the intermolecular and intramolecular skewered reactions in free‐radical crosslinking LBR/vinyl pivalate copolymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
The preliminary study of the effect of physical crosslinking on the gelation in monovinyl/divinyl copolymerizations is described. Thus, mono(2‐methacryloyloxyethyl) succinate was added to the crosslinking copolymerization of butyl methacrylate with 1,6‐hexanediol dimethacrylate and the gelation was explored in terms of the effect of hydrogen bonds formed between carboxyl groups introduced into the primary polymer chain.  相似文献   

5.
A comprehensive model for molecular weight calculations of free-radical crosslinking copolymerizations was developed using the pseudo-kinetic rate constants and the method of moments. The moments of copolymer chain distributions are defined in such a way so that the molecular weight averages of crosslinking copolymers can be calculated using the moments. The present model is based on a general crosslinking copolymerization scheme, accounting for chain transfer to small molecules and polymer, bimolecular termination, and crosslinking reactions. The influence of crosslinking reactions on molecular weight development is discussed. The effects of the reactivity of pendant double bonds on the moments development were further demonstrated using model simulations. The simulations results suggest that the higher-order molecular weight averages are very sensitive to the reactivity of pendant double bonds. It was found that chain transfer to polymer affects the gelation point significantly. The radical fractions must be calculated accounting for chain transfer reactions in addition to propagations in order to properly evaluate pseudo-kinetic rate constants. The present model was used to predict kinetic behavior and molecular weight development of styrene/m-divinylbenzene and styrene/ethylene dimethacrylate free-radical crosslinking copolymerizations in benzene solution at 60°C. It was found that the present model is in excellent agreement with the experimental data published in the literature. Model predictions and experimental data show that the reactivity of pendant double bonds is much lower than that of vinyl and divinyl monomers. The simulation results suggest that the assumption of the same reactivity of functional groups is likely not valid for many free-radical crosslinking copolymerizations. The present model based on a kinetics approach can be used to predict molecular weight development for vinyl/divinyl free-radical crosslinking copolymerizations and to estimate kinetic parameters in the pre-gelation period.  相似文献   

6.
The effect of physical interaction through hydrogen bonds on the intermolecular crosslinking reaction leading to the promoted gelation in free-radical crosslinking monovinyl/divinyl copolymerizations was discussed from the standpoint of the control of network formation. The solution copolymerizations of benzyl methacrylate (BzMA) with 2 mol% of 1,6-hexanediol dimethacrylate in t-butylbenzene were conducted in the absence and presence of different amounts of mono(2-methacryloyloxyethyl) succinate (MMOES). Gelation was promoted by the addition of MMOES and the ratio of the actual gel point to the theoretical one became smaller; this would be related to the formation of hydrogen bonds between carboxyl groups introduced into prepolymer and growing polymer radical. As an extension of the above discussion, we treated the effect of hydrogen bonds on the gelation in the crosslinking BzMA/triicosaethylene glycol dimethacrylate copolymerization. The addition of MMOES obviously promoted the gelation. The ratio of the actual gel point to the theoretical one calculated according to Stockmayer's equation [J. Chem. Phys. 12 (1944) 125] was obtained as 1.9, very close to unity.  相似文献   

7.
The heterochain crosslinking theory is applied to postgel behavior in the free‐radical crosslinking copolymerization of vinyl and divinyl monomers. In this context, the crosslinked polymer formation can be viewed as a system in which the primary chains formed at different times are combined in accordance with the statistical chain‐connection rule governed by the chemical reaction kinetics. Because the primary chains are formed consecutively, the number of chain types N must be extrapolated to infinity, N → ∞. Practically, such extrapolation can be conducted with the calculated values for only three different N values. The analytical expressions for the weight fraction and average molecular weights of the sol fraction are derived for the general primary chain length distribution function in free‐radical polymerization. Illustrative calculations show that the obtained results agree with those from the Monte Carlo method, and that the postgel properties in free‐radical crosslinking copolymerization systems could be significantly different from those in randomly crosslinked systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2342–2350, 2000  相似文献   

8.
Some features of radical ternary copolymerization of maleic anhydride (MA)–styrene (St)–acrylonitrile (AN) and n‐butyl methacrylate (BMA)–St–AN acceptor–donor–acceptor monomer systems have been revealed. The terpolymer compositions and kinetics of copolymerizations were studied in the initial and high conversion stages. The considerable divergence in the copolymer compositions was observed when a strong acceptor MA monomer was substituted with BMA having comparatively low acceptor character in the ternary system studied. Obtained results show that terpolymerization proceeded mainly through “complex” mechanism in the state of near binary copolymerization of St…MA (or BMA) and AN…St complexes only in the chosen ratios of complexed monomers. The terpolymers synthesized have high thermal stabilities (295–325 °C), which is explained by possible intermolecular fragmentation of AN‐units through cyclization and crosslinking reactions during thermotreatment in the isothermal heating conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2652–2662, 2000  相似文献   

9.
2,2′‐Azobis[N‐(2‐propenyl)‐2‐methylpropionamide] (APMPA) with two carbon–carbon double bonds and an azo group was copolymerized with vinyl benzoate (VBz) at 60 °C, resulting in azo groups containing VBz/APMPA prepolymers and crosslinked polymers as soluble and insoluble polymeric azo initiators, respectively. The polymerization characteristics of APMPA as a novel diallyl monomer were clarified with the rate and degree of polymerization and the monomer reactivity ratios. The gelation behaviors in VBz/APMPA crosslinking copolymerizations were examined in detail with a comparison of the actual gel point and the theoretical gel point calculated according to Stockmayer's equation with the tentative assumption of equal reactivity for both vinyl groups belonging to VBz and APMPA. The effectiveness of the resulting branched or crosslinked poly(VBz‐co‐APMPA)s as soluble or insoluble polymeric azo initiators, respectively, at providing graft polymers through the cleavage of azo groups at an elevated temperature was examined by the polymerization of allyl benzoate at 120 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 317–325, 2002  相似文献   

10.
The controlled free‐radical homopolymerization of ethyl α‐hydroxymethylacrylate and copolymerization with methyl methacrylate were performed in chlorobenzene at 70 °C by the reversible addition–fragmentation chain transfer polymerization technique with 2,2′‐azobisisobutyronitrile as the initiator. 2‐Phenylprop‐2‐yl dithiobenzoate and 2‐cyanoprop‐2‐yl dithiobenzoate were used as chain‐transfer agents in the homopolymerization, whereas only the former was used in the copolymerization. All reactions presented pseudolinear kinetics. The effect of the monomer feed ratio on the copolymerization kinetics was examined. The conversion level decreased when the proportion of ethyl α‐hydroxymethylacrylate in the monomer feed was larger. Kinetic studies indicated that the radical polymerizations proceeded with apparent living character according to experiments, demonstrating an increase in the molar mass with the monomer conversion and a relatively narrow molar mass distribution. All copolymers were statistical in chain structure, as confirmed by determinations of the monomer reactivity ratios. The monomer reactivity ratios were determined, and the Mayo–Lewis terminal model provided excellent predictions for the variations of the intermolecular structure over the entire conversion range. Additionally, the chemical modification of poly(ethyl α‐hydroxymethylacrylate) was carried out to introduce glucose pendant groups into the structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5618–5629, 2006  相似文献   

11.
Crosslinking copolymerization of butyl methacrylate with a small amount of divinylbenzene (DVB) was carried out using single‐electron transfer‐living radical polymerization initiated with carbon tetrachloride (CCl4) and catalyzed by Cu(0)/N‐ligand in N,N‐dimethylformamide to produce a highly oil‐absorbing gel. The polymerization, gelation process, and oil‐absorbing properties were studied in detail. Analysis of monomer conversion with reaction time showed that the polymerization followed first‐order kinetics for both linear and crosslinking polymerization before gelation. Higher levels of DVB led to earlier gelation and the influence of N‐ligand on gelation was also significant. Under optimal conditions, oil absorption of the prepared gel to chloroform could reach 42.1 g·g?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3233–3239  相似文献   

12.
The bulk copolymerizations of monoallyl phthalate (MAP) with allyl benzoate (ABz) and diallyl phthalate (DAP) were conducted in the presence of benzoyl peroxide as an initiator at 70°C; copolymers containing allyl alcohol unit were obtained. The copolymer composition was reasonably interpreted in terms of polymerization kinetics, including the partial elimination of phthalic anhydride (PhA) from the MAP growing chain end in its propagation reaction with another monomer. Kinetics of the copolymerization of DAP with MAP were also discussed in detail, and the gel point was additionally evaluated. DAP–MAP copolymer was homogeneously reacted with zinc acetate to produce the polymer gel carrying ionic crosslinkages.  相似文献   

13.
This contribution reports that synthesis of polystyrene based photoactive polymeric nanoparticles by radical copolymerization and Menschutkin Chemistry methodology. In the first step, poly(styrene‐co‐chloromethyl styrene) was achieved by thermally initiated radical copolymerizations and subsequently copolymers were reacted to commercially available Type II photoiniator (Michler's ketone) in dilute condition in order to achieve intramolecular crosslinked polymeric nanoparticles. After the characterization studies, polymeric nanoparticles were used for free radical photopolymerization of methacrylic formulations to determine the initiation efficiency. Upon UV irradiation, resulting polymeric nanoparticle lost its globular structure by releasing benzophenone part and transformed into linear copolymer analogue. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1998–2003  相似文献   

14.
The network formation in the radical polymerization of multivinyl monomers, especially including diallyl esters and dimethacrylates, is dealt by focusing our attention on the mechanistic discussion on deviation from ideal network formation. Thus, in the bulk polymerization of diallyl phthalate, the actual gel point was obtained to be 6.9 times higher compared with the theoretical one. In common multivinyl polymerization systems, the discrepancy was more than 10 times and sometimes, more than 102. Moreover, the extent of deviation was enhanced with increasing primary chain length, the content of pendant vinyl groups in the prepolymer, and dilution. In order to interpret reasonably the greatly delayed gelation different structural factors were considered. The primary factor concerns the significance of the thermodynamic excluded volume effect on the intermolecular crosslinking reaction between growing radical and prepolymer, especially at high molecular weight. Beyond the theoretical gel point, a secondary factor is related to the intramolecular crosslinking which becomes progressively important with conversion. The latter leads to the restriction of segmental motion of prepolymer and, moreover, imposes the steric hindrance, inducing the significance of the reduced reactivity of prepolymer as a tertiary factor. Solvent effect was observed as much delayed gelation in a good solvent as opposed to Walling's results, although this is expected by considering the significance of excluded volume effect.  相似文献   

15.
Various copper‐based catalyst systems and reaction conditions were studied in the graft copolymerization of N,N‐dimethylacrylamide (DMAam) with a cellulose‐based macroinitiator by controlled radical polymerization. The cellulose macroinitiator with degree of substitution DS = 0.44 was synthesized from dissolving softwood pulp in a LiCl/DMAc solution. The graft copolymerizations of DMAam, using the cellulose macroinitiator and various copper‐based catalyst systems, were then carried out in DMSO solutions. The copolymerization kinetics was followed by 1H NMR. Water‐soluble cellulose‐g‐PDMAam copolymers were comprehensively characterized by ATR‐FTIR and 1H NMR spectroscopies and SEC analyses. DLS and steady‐shear viscosity measurements revealed that when the DPgraft of the cellulose‐g‐PDMAam copolymer is high enough, the copolymer forms a more compact structure in water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The polymeric product spectrum generated in thioketone‐mediated free radical polymerization (TKMP) was analyzed via electrospray ionization mass spectrometry. Poly(n‐butyl acrylate) samples were synthesized in the presence of the (commercially available) thioketone 4,4‐bis(dimethylamino)thiobenzophenone under variable reaction conditions in toluene solution at 80 °C. To unambiguously assign the mass spectra, the samples are prepared under variation of the monomer (going from n‐butyl acrylate to ethyl acrylate) as well as by employing variable thermally decomposing initiators [i.e., 2,2′‐azoisobutyronitrile and azobis(cyclohexanecarbonitrile)]. In all mass spectra, significant amounts of the expected cross‐termination product, formed via bimolecular termination of propagating macroradicals with the dormant thioketone radical adduct (consisting of a propagating chain and the mediating thioketone) alongside conventional termination products can be identified. As the study was carried out on acrylate polymers, acrylate‐specific reaction products arising from intramolecular transfer reactions followed by β‐scission of the generated mid‐chain radicals are also identified in the mass spectra. In addition, a species congruent with the dormant thioketone radical adduct itself (oxidized to its cationic state) was identified. Products that could potentially be formed via a chain transfer mechanism cannot be identified. The results presented here thus support the earlier suggested TKMP mechanism involving a highly stabilized adduct radical which undergoes significant cross‐termination reactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1864–1876, 2009  相似文献   

17.
Oligomer samples obtained by the anionic copolymerization of a bis(γ‐lactone), 2,8‐dioxa‐1‐methylbicyclo[3.3.0]octane‐3,7‐dione ( 1 ), and glycidyl phenyl ether with potassium tert‐butoxide have been analyzed by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. The MALDI‐TOF mass spectra of these cooligomers show well‐resolved signals that can be reliably assigned to linear, alternating cooligomers that have carboxylate chain ends or alkoxide chain ends and cyclic ones. The formation of these three series of cooligomers suggests that the polymerization process involves concomitant intermolecular transesterification and intramolecular back‐biting. The intramolecular back‐biting reaction causes the formation of cyclic cooligomers, whereas the intermolecular transesterification causes the reduction of the molecular weight and the transformation of the alkoxide active chain end into a carboxylate chain end. The MALDI‐TOF mass spectrometry study has shown that an excess of monomer 1 enhances the selectivity of propagation by increasing the probability of the attack of the alkoxide chain end to 1 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2643–2649, 2005  相似文献   

18.
Nitroxyl radicals were used as functionalizing agents during the free radical postreactor modification process of polyolefins carried out in the melt. The 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (HO‐TEMPO) and the 4‐benzoyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (BzO‐TEMPO) free radicals were successfully grafted onto a polyethylene‐based material (ethylene‐co‐1‐octene copolymer) by coupling reaction with polymer macroradicals; these last were formed by H‐abstraction through peroxide addition. The macromolecular structure of the functionalized polyolefins was assessed by 1H‐NMR, FTIR spectroscopy, and SEC measurements which were used to evidence the grafting site, to evaluate the grafting level and to highlight the occurrence of chain extension through crosslinking side reactions. Indeed the use of proper model compounds allowed the preparation of accurate FTIR calibration curves for the quantitative determination of the functionalization degree. Besides the high temperature SEC analysis highlighted that this fast and simple coupling reaction between macroradicals and nitroxyl free radicals grants the grafting of functionalities onto the polyolefin backbone by contemporarily preventing the side reactions liable of the structure and MW modification of the pristine polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Functional spontaneous gradient copolymers of allyl methacrylate (A) and butyl acrylate (B) were synthesized via atom transfer radical polymerization. The copolymerization reactions were carried out in toluene solutions at 100 °C with methyl 2‐bromopropionate as the initiator and copper bromide with N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst system. Different aspects of the statistical reaction copolymerizations, such as the kinetic behavior, crosslinking density, and gel fraction, were studied. The gel data were compared with Flory's gelation theory, and the sol fractions of the synthesized copolymers were characterized by size exclusion chromatography and nuclear magnetic resonance spectroscopy. The copolymer composition, demonstrating the gradient character of the copolymers, and the microstructure were analyzed. The experimental data agreed well with data calculated with the Mayo–Lewis terminal model and Bernoullian statistics, with monomer reactivity ratios of 2.58 ± 0.37 and 0.51 ± 0.05 for A and B, respectively, an isotacticity parameter for A of 0.24, and a coisotacticity parameter of 0.33. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5304–5315, 2006  相似文献   

20.
Novel mono‐ and multifunctional vinyl ester monomers containing thioether groups were synthesized via an amine‐catalyzed Michael addition reaction between vinyl acrylate and multifunctional thiols. Using photo‐differential scanning calorimetry and real‐time Fourier transform infrared (RTIR) spectroscopy, the polymerization kinetics and oxygen inhibition of the homopolymerizations of the vinyl ester monomers were investigated. The effect of the vinyl ester and thioether group on acrylate/vinyl ester and thiol/vinyl ester copolymerizations was determined using real‐time IR spectroscopy to monitor polymerization rates of acrylate, vinyl, and thiol groups simultaneously. Polymerization of the vinyl esters used was found to be relatively insensitive to oxygen inhibition. We propose that the thioether group is responsible for reducing oxygen inhibition by a series of chain transfer/oxygen‐scavenging reactions. In polymerization of a acrylate/vinyl ester mixture both in nitrogen and in air, the vinyl ester monomer significantly enhances the polymerization rates and the conversion of the acrylate double bonds via plasticization of the crosslinked matrix and reduction of inhibition by oxygen. Ultimately, the vinyl ester monomer is incorporated into the polymer network. Thiol/vinyl ester free‐radical copolymerization is much faster than either thiol/allylether copolymerization or vinyl ester homopolymerization. The electron‐rich vinyl ester double bonds ensure rapid copolymerization with thiol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4424–4436, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号