首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel achiral monomer end‐capped with a phenyl‐[1,3,4]oxadiazolyl group and threaded through β‐cyclodextrin was synthesized to investigate the host‐guest interactions in the inclusion complex. 1H NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized achiral monomer, leading to the formation of a fibrous construction of self‐assembled inclusion complexes. The formation of a self‐assembled inclusion complex was identified using SEM and TEM. The highly ordered alignment of self‐assembled supramolecules was confirmed using polarized optical microscopy. We demonstrate an easy process for the fabrication of nano‐structured self‐assembled inclusion complexes in pyridine/ethanol (1 mL/10 mL) as well as the enhancement of photo‐induced fluorescence via monomers end‐capped with a phenyl‐[1,3,4]oxadiazolyl moiety threaded with β‐cyclodextrins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3368–3374, 2010  相似文献   

2.
Pentacyclic triterpenoids, a class of naturally bioactive products having multiple functional groups, unique chiral centers, rigid skeletons, and good biocompatibility, are ideal building blocks for fabricating versatile supramolecular structures. In this research, the natural pentacyclic triterpenoid glycyrrhetinic acid (GA) was used as a guest molecule for β‐cyclodextrin (β‐CD) to form a GA/β‐CD (1:1) inclusion complex. By means of GA and β‐CD pendant groups in N,N′‐dimethylacrylamide copolymers, a supramolecular polymer hydrogel can be physically cross‐linked by host–guest interactions between GA and β‐CD moieties. Moreover, self‐healing of this hydrogel was observed and confirmed by step‐strain rheological measurements, whereby the maximum storage modulus occurred at a [GA]/[β‐CD] molar ratio of 1:1. Additionally, these polymers displayed outstanding biocompatibility. The introduction of a natural pentacyclic triterpenoid into a hydrogel system not only provides a biocompatible guest–host complementary GA/β‐CD pair, but also makes this hydrogel an attractive candidate for tissue engineering.  相似文献   

3.
New random copolymers, poly(N‐vinyl‐2‐pyrrolidone‐co‐mono‐6‐deoxy‐6‐methacrylate ethylamino‐β‐cyclodextrin) (PnvpCD) bearing pendent β‐cyclodextrin (CD) groups were synthesized. PnvpCD formed soluble graft‐like polymer complex with adamantane (AD) end‐capped poly(ε‐caprolactone) (PclAD) in their common solvent N‐methyl‐2‐pyrrolidone driven by the inclusion interactions between the CD and AD groups. The formation of the graft complex has been confirmed by viscometry, dynamic light scattering (DLS), and isothermal titration calorimeter. The graft complex self‐assembled further into noncovalently connected micelles in water, which is a selective solvent for the main chain PnvpCD. Transmission electron microscopy, DLS, and atomic force microscopy have been used to investigate the structure and morphology of the resultant micelles. A unique “multicore” structure of the micelles, in which small PclAD domains scattered within the micelles, was obtained under nonequilibrium conditions in the preparation. However, the micelles prepared in a condition close to equilibrium possess an ordinary core‐shell structure. In both cases, the core and shell are believed to be connected by the AD‐CD inclusion complexation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4267–4278, 2009  相似文献   

4.
Effective induction of preferred‐handed helicity of polyacetylenes by pendant mechanically chiral rotaxanes is discussed. Polyacetylenes possessing optically active mechanically chiral rotaxanes in the side chains were synthesized by the polymerization of the corresponding enantiopure [2]rotaxane‐type ethynyl monomers prepared by the chiral‐phase HPLC separations. The CD Cotton effects revealed that the polyacetylenes took preferred‐handed helical conformations depending on the rotaxane chirality. The preferred‐handed helix was not disturbed by an additional chiral substituent on the rotaxane side chain. These results demonstrate the significance and utility of mechanically chiral rotaxanes for the effective construction of asymmetric fields.  相似文献   

5.
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

6.
Cyclodextrins thread onto polymer chains to form inclusion complexes, especially when the polymer is hydrophobic relative to the solvent. Selective threading might occur when the polymer architecture contains both hydrophobic and hydrophilic segments. α‐Cyclodextrin formed crystalline inclusion complexes with (AB)n microblock copolymers, where the A block was a linear alkyl segment containing a single double bond and the B block was an exact length segment of poly(ethylene oxide). The complexes were isolated and characterized by solution and solid‐state NMR, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. Each method confirmed complex formation and showed that the physical properties of the complexes were distinct from those of its individual components. The X‐ray data were consistent with known inclusion complexes having a channel or column crystal structure. The stoichiometry of the complex formation, 2.3 α‐cyclodextrin rings per polymer repeat unit, was determined by NMR analysis of the complexes and from an analysis of the inclusion complex yields. The data suggest that the inclusion complex stoichiometry is defined by the increasing insolubility of the polymer–cyclodextrin complex. Solid‐state NMR data were consistent with a preference for threading onto hydrophobic segments of the (AB)n polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2731–2739, 2001  相似文献   

7.
An efficient novel method for the synthesis of a covalent molecularly imprinted polymer (MIP) highly specific to β‐estradiol have been developed. MIP prepared by both covalent and non covalent techniques, demonstrated high selectivity toward β‐estradiol. MIPs were synthesized by radical polymerization of 17‐β‐estradiol 4‐vinyl‐benzene carboxyl or sulfonyl esters used as covalent functional monomers, methacrylic acid as noncovalent functional monomer, ethylene glycol dimethacrylate as crosslinking agent, and acetonitrile as swelling and porogenic component. Almost 35% (w/w) of 17‐β‐estradiol was successfully removed from the polymer network by basic hydrolysis. The binding ability of MIP was 10.73 μg/mg MIP following removal of 17‐β‐estradiol in the 2 mg/mL β‐estradiol solution. Selective rebinding of β‐estradiol toward MIP was tested in the presence of competitive binders including estrone, 19‐nortestosterone, epiandrosterone, and cholesterol. Estrone having closest similar chemical structure to β‐estradiol exhibited only 0.6 μg/mg MIP competitive binding, being exposed to equivalent concentrations. Moreover, other competitive steroids demonstrated negligible affinity toward MIP indicating high selectivity of novel MIP system toward β‐estradiol. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5534–5542, 2009  相似文献   

8.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

9.
A host–guest (HG) polymer was prepared through the radical polymerization of acrylamide monomers (AAm) with a small amount of host‐guest linkers, β‐cyclodextrin‐attached AAm (βCD‐AAm) and adamantane‐attached AAm (Ad‐AAm). The linear viscoelastic and swelling measurements indicated that the resulting HG polymer swollen in water was gel‐like, although the HG polymer is conceptually a linear chain having only temporary crosslinkings. NMR measurements indicated that half of the βCD units incorporated in the HG polymer do not form the inclusion complex with Ad. Rheological analysis of the HG polymer revealed that HG interaction retarded the Rouse modes of networks but did not affect the level of the plateau modulus, which was simply described by the entanglements of AAm chains. This result was confirmed with the reference experiment, in which Ad were capped by competitive βCD molecules. Furthermore, the PAAm polymer with only βCD units (no Ad) was found to exhibit gel‐like behavior. This behavior was attributed to the formation of a small amount of rotaxane structure, which act as permanent crosslinkings, based on 2D NMR data. The HG polymer is basically an entanglement network with temporary sticky points due to the HG interaction, and a few permanent branching points. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1109–1117  相似文献   

10.
Organic–inorganic hybrid brushes comprised of macrocyclic oligomeric silsesquioxane (MOSS) and poly(ε‐caprolactone) (PCL) were synthesized via the ring‐opening polymerization of ε‐caprolactone (CL) with cis‐hexa[(phenyl) (2‐hydroxyethylthioethyldimethylsiloxy)]cyclohexasiloxane as the initiator. The MOSS macromer bearing hydroxyl groups was synthesized via the thiol‐ene radical addition reaction between cis‐hexa[(phenyl)(vinyldimethylsiloxy)]cyclohexasiloxane and β‐mercaptoethanol. The organic–inorganic PCL cyclic brushes were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). These MOSS–PCL brushes were then used to prepare the supramolecular inclusion complexes with α‐cyclodextrin (α‐CD). The X‐ray diffraction (XRD) indicates that the organic–inorganic inclusion complexes (ICs) have a channel‐type crystalline structure. It is noted that the molar ratios of CL unit to α‐CD for the organic–inorganic ICs are quite dependent on the lengths of the PCL chains bonded to the silsesquioxane macrocycle. While the PCL chains were short, the efficiency of inclusion complexation was significantly decreased. The decreased efficiency could be attributed to the repulsion of the adjacent PCL chains bonded to the silsesquioxane macrocycle and the restriction of the bulky silsesquioxane macrocycle on the motion of PCL chains; this effect is pronounced with decreasing the length of the PCL chains. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

11.
A polyrotaxane in which β‐cyclodextrins (β‐CDs) are threaded onto a polyether chain was prepared by polycondensation of a β‐CD/bisphenol A (BPA) inclusion complex with aromatic dihalides. Two dihalides, with and without a side chain, were used. This polycondensation results in a polyrotaxane (or pseudopolyrotaxane for polymers without stoppers) with a 1:1 threading ratio when the side chain is present and 2:3 when there is none. The long side chain prevents dethreading of the macrocycles. The best yield and a good threading ratio were obtained when the polycondensation was performed by liquid?solid phase transfer catalysis without solvent (L/S PTC) using 2,5‐bi(iodomethyl)‐4‐methoxy‐(1‐octyloxy)benzene as dihalide. The 1H NMR and FTIR spectra show that the products consist of β‐CD and polyether. The 2D NOESY NMR spectrum shows that the polyether chains are included in the β‐CD cavity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4391–4399, 2009  相似文献   

12.
We, herein, present a novel synthesis of responsive helical poly(aryl isocyanide)s bearing aza‐crown ethers as pendant groups. Chiral aryl isocyanide monomers bearing an aza‐crown ether as a pendant were designed and synthesized, piror to polymerization using a Pd‐Pt µ‐ethynediyl complex as an initiator to give the corresponding polymers in good yield. The resulting polyisocyanides adopted a stable helical structure in solution, as confirmed by circular dichroism spectroscopic analysis. In addition, the polymers were soluble in various solvents. Furthemore, the addition of suitable alkali metal ions to the crown ether of the sidechain on the helical polyisocyanide to form host‐gest complexes resulted in deformation of the helix due to electrostatic repulsion, and these phenomena depended on the size of metal cations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 496–504.  相似文献   

13.
Polystyrene (PS) microspheres coated with β‐cyclodextrin (β‐CD) were fabricated via γ‐ray‐induced emulsion polymerization in a ternary system of styrene/β‐CD/water (St/β‐CD/water). The solid inclusion complex of St and β‐CD particles formed at the St droplets–water interface can stabilize the emulsion as the surfactant. TEM and XPS results showed that β‐CD remains on the surface of PS particles. The average size of the PS particles increases from 186 to 294 nm as the weight ratio of β‐CD to St rises from 5% to 12.5%. The water contact angle (CA) of PS latex film is lower than 90°, and reduces with the β‐CD content even to 36°. Thus, this work provides a new and one‐pot strategy to surface hydrophilic modification on hydrophobic polymer particles with cyclodextrins through radiation emulsion polymerization.  相似文献   

14.
Solutions of a binaphthoxy phosphazene copolymer (containing chiral 2,2′‐dioxy‐1,1′‐binaphthyl units with 50% R and S configurations distributed along the chains) in N‐methyl pyrrolidone were studied by means of continuous flow experiments and small amplitude oscillatory flow tests. A sudden viscosity decrease was observed in the polymer concentration range (39–40 wt %), evidencing a liquid‐crystalline polymer behavior. This has been confirmed by other rheological methods which have demonstrated that, for a sufficiently high concentration, the solutions of the binaphthoxy phosphazene copolymer give rise to a lyotropic system with formation of rigid rods (axial ratio of 10) stacked parallel to each other. The lyotropic properties of our binaphthoxy phosphazene copolymer are compatible with a regular helical structure, similar to that found for a homoleptic binaphthoxy phosphazene, which contains only S configuration. This suggests that the chains of 50% R/S binaphthoxy phosphazene copolymer are, in average, close to the strictly alternating RS copolymeric structure of the syndiotactic isomer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

15.
Stable colloidal dispersions of nanostructured semifluorinated acrylic particles with an unfluorinated core and an outer layer consisting of copolymers of the highly hydrophobic and lipophobic heptadecafluorodecyl methacrylate (FMA) were successfully synthesized with the assistance of three different cyclodextrins as phase‐transfer catalysts: β‐cyclodextrin (β‐CD), hydroxypropyl β‐cyclodextrin (HpCD), and methyl β‐cyclodextrin (MeCD). While all the cyclodextrins form a stable inclusion complex (IC) with FMA, only the ICs with the more hydrophilic HpCD and MeCD are soluble in water. Nevertheless, incorporation of FMA in the particle shell copolymer could be achieved also when using β‐CD. On the other hand, the morphology of the nanostructured particles was characterized by a “patchy” fluorinated shell dependent on the cyclodextrin used, the best results being obtained with MeCD. A monomer‐starved semicontinuous emulsion polymerization procedure was essential to favor the CD‐mediated incorporation of FMA into the copolymer structure and to achieve a stable colloidal dispersion even in the presence of small amounts of mixed anionic–nonionic surfactants. The thermal and surface properties of the latex films showed a good correlation with the shell composition and patchy nanostructured morphology of the particles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The exhaustive primary‐side alkylation of cyclodextrins has never been achieved directly. The undesired and simultaneous derivatization of the secondary hydroxyl moieties generates intricate isomeric mixtures that are challenging to purify, analyse and characterize. The aim of this study was to develop a chromatography‐free and up‐scalable strategy towards the preparation of per‐6‐O‐methylated cyclodextrin and to test the compound as potential chiral selector. The target molecule was prepared according to a five‐step synthesis by using methyltriphenylphosphonium bromide as catalyst under heterogeneous conditions. The removal of benzyl moieties, used as temporary secondary‐side protecting groups, was attained by applying hydrazine‐carbonate in the presence of Pd/C. All the intermediates were obtained in high yields, thoroughly characterized and their purity was assessed by ad‐hoc developed HPLC methods. The per‐6‐O‐methylated β‐cyclodextrin showed promising chiral recognition ability as background electrolyte additive in cyclodextrin‐modified capillary electrophoresis using the recreational drug methylene‐dioxypyrovalerone as model compound. Additionally, a model for the inclusion geometry between the single isomer host and the selected drug was developed based on the extensive 2D NMR analysis. The versatility of the proposed synthetic strategy opens the way to the industrial production of homogeneously primary‐alkylated cyclodextrins and to their wide application in chiral separation of various drugs.  相似文献   

17.
The radical polymerization of Ntert‐butyl‐N‐allylacrylamide (t‐BAA) was carried out in a dimethyl sulfoxide/H2O mixture in the presence of β‐cyclodextrin (β‐CD). The polymerization proceeded with the complete cyclization of the t‐BAA unit and yielded optically active poly(t‐BAA). The IR spectrum of the obtained polymer showed that the cyclic structure in the polymer was a five‐membered ring. The optical activity of poly(t‐BAA) increased with an increasing molar ratio of β‐CD to the t‐BAA monomer. The interaction of β‐CD with t‐BAA was confirmed by 1H NMR and 13C NMR analyses of the polymerization system. It is suggested that interaction of the t‐BAA monomer with the hydrophobic cavity of β‐CD plays an important role in the asymmetric cyclopolymerization of t‐BAA. The radical copolymerization of t‐BAA with styrene (St), methyl methacrylate, ethyl methacrylate, or benzyl methacrylate (BMA) also produced optically active copolymers with a cyclic structure from the t‐BAA unit. St and BMA carrying a phenyl group were predicted to compete with t‐BAA for interaction with β‐CD in the copolymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2098–2105, 2000  相似文献   

18.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

19.
Chiral, pH‐responsive hydrogels are constructed by poly(ethylene glycol) diacrylate/α‐cyclodextrin (PEGDA/α‐CD) inclusion complex and L‐N‐acryloyl‐alanine or D‐N‐acryloyl‐alanine (L‐NAA or D‐NAA) by an effective free radical polymerization approach. PEGDA containing two C=C end groups was used simultaneously to introduce α‐CD units in the resulting hydrogels and to serve as a cross‐linking agent, by which forming the designed hydrogels in quantitative yield. Hydrophilic α‐CD moieties acted as pore‐forming agent, while the L(D)‐NAA‐based polymer chains bearing –COOH groups enabled the hydrogels to display remarkable swelling–deswelling behavior in response to pH variation. The chiral NAA monomer‐derived polymer chains rendered the hydrogels with intriguing optical activity, according to circular dichroism spectra. Scanning electron microscopy revealed the uniformly porous microstructures of hydrogels. More remarkably, the L‐NAA‐based hydrogels preferentially adsorbed trans‐4‐hydroxy‐d ‐proline and preferentially released trans‐4‐hydroxy‐l ‐proline, while D‐NAA‐based hydrogels provided opposite results. The hydrogels also demonstrated remarkable enantioselective release ability towards chiral drug ibuprofen. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号