首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

2.
A series of fluorinated block copolymers with different fluorinated block lengths and compositions were synthesized by atom transfer radical polymerization (ATRP), and then the block copolymers containing sulfonic groups with various sulfonation levels were successfully prepared further via a sulfonation reaction. These well‐defined block copolymers were characterized by means of Fourier transform infrared (FTIR), 1H‐nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The surface activities of the fluorinated block copolymers containing sulfonic groups in N‐methyl pyrrolidone solution and the surface properties of the films prepared from such a solution were examined, and the experimental results showed that the fluorinated block copolymers exhibited a high surface activity in solution and quite a low solid surface energy of films, even though they contain hydrophilic sulfonic groups. The critical surface tensions of these copolymers were estimated and were comparable to that of polytetrafluoroethylene. Even more interestingly, the surface activities of the block copolymers containing sulfonic groups or sodium sulfonate groups in aqueous solution were also measured. It was found that the surface activity in aqueous solution was weaker than that in N‐methyl pyrrolidone solution and depended on both the length of the fluorinated block and the sulfonation level of the block copolymers. The surface properties of the films prepared from the block copolymers in aqueous solution were tested, and most of these films exhibited a hydrophilic surface property. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4809–4819, 2004  相似文献   

3.
A series of highly fluorinated polymers were synthesized by copolymerization of 2,3,4,5,6‐pentafluorostyrene (PFS) and fluorinated styrene derivate monomer (FSDM). Their chemical structure were confirmed by 1H NMR, 13C NMR, and 19F NMR spectra. The refractive index and cross‐linking density of the polymers can be tuned and controlled by monitoring the feed ratio of comonomers. A series of negative‐type low‐molecular‐weight fluorinated photoresists (NFPs) were prepared by composing of fluorinated polystyrene derivates (FPSDs), diphenyl iodonium salt as a photoacid generator (PAG) and solvent. The polymer films prepared from NFP by photocuring exhibited excellent chemical resistance and thermal stabilities (Td ranged from 230.5 to 258.1 °C). A clear negative pattern was obtained through direct UV exposure and chemical development. For waveguides without upper cladding, the propagation loss of the channel waveguides was measured to be 0.25 dB/cm at 1550 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Block copolymers of acryloxy propyl triethoxysilane and styrene were prepared through nitroxide‐mediated polymerization using alkoxyamine initiators based on Ntert‐butyl‐1‐diethylphosphono‐2,2‐dimethylpropyl nitroxide. The copolymers were characterized by 1H NMR, size exclusion chromatography and differential scanning calorimetry. Their micellar behavior in dioxane/methanol solutions was examined through static light scattering and transmission electron microscopy (TEM). TEM indicated the successful formation of spherical micelles which were subsequently frozen by the sol–gel process. Hydrolysis–condensation of the reactive ethoxysilyl side groups was followed by FTIR, 1H NMR, and 29Si NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 784–793, 2010  相似文献   

5.
1H,1H,2H,2H‐Perfluorooctyloxymethylstyrene (FS) was prepared and copolymerized with chloromethylstyrene (CMS). Conventional radical copolymerization of both these aromatic monomers led to poly(CMS‐co‐FS) random copolymers for which CMS was shown to be more reactive than the fluorinated comonomer. Their controlled radical copolymerization based on degenerative transfer, namely iodine transfer polymerization (ITP), led to various poly(CMS)‐b‐poly(FS) block copolymers. Molecular weights of poly(CMS‐co‐FS) copolymers reached 33,000 g mol?1 while those of poly(CMS)‐b‐ poly(FS) block copolymers were 22,000 g mol?1. Their composition ranged from 18 to 61 mol.% in FS. These copolymers were modified via a cationization step, aiming at replacing the chlorine atom in CMS unit by a trimethylammonium group, leading to the formation of cationic sites. The resulting functionalized copolymers exhibited different solubilities. If both copolymerization techniques led to water‐insoluble copolymers, the block architecture enabled incorporating lower FS proportion, resulting in more cationic sites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Reversible addition‐fragmentation chain transfer polymerization was employed to synthesize a set of copolymers of styrene (PS) and 2,3,4,5,6‐pentafluorostyrene (PPFS), as well as block copolymers with tert‐butyl acrylate (PtBA)‐b‐PS‐co‐PPFS, with control over molecular weight and polydispersity. It was found that the copolymerization of styrene and PFS allowed for the preparation of gradient copolymers with opposite levels of monomer consumption, depending on the feed ratio. Conversion to amphiphilic block copolymers, PAA‐b‐(PS‐co‐PPFS), by removing the protecting groups was followed by fitting with monomethoxy poly(ethylene glycol) chains. Solution‐state assembly and intramicellar crosslinking afforded shell crosslinked knedel‐like (SCK) block copolymer nanoparticles. These fluorinated nanoparticles (ca. 20 nm diameters) were studied as potential magnetic resonance imaging (MRI) contrast agents based on the 19F‐nuclei; however, it was found that packaging of the hydrophobic fluorinated polymers into the core domain restricted the mobility of the chains and prohibited 19F NMR spectroscopy when the particles were dispersed in water without an organic cosolvent. Packing of perflouro‐15‐crown‐5‐ether (PFCE) into the polymer micelle was demonstrated with good uptake efficiency; however, it was necessary to swell the core with a good solvent (DMSO) to increase the mobility and observe the 19F NMR signal of the PFCE. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1023–1037, 2009  相似文献   

7.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

8.
A series of environmentally sensitive ABA triblock copolymers with different block lengths were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization from acrylic acid (AA) and N‐isopropylacrylamide (NIPAAm). The GPC and 1H NMR analyses demonstrated the narrow molecular weight distribution and precise chemical structure of the prepared P(AA‐b‐NIPAAm‐b‐AA) triblock copolymers owing to the controlled/living characteristics of RAFT polymerization. The lower critical solution temperature (LCST) of the triblock copolymers could be tailored by adjusting the length of PAA block and controlled by the pH value. Under heating, the triblock copolymers underwent self‐assemble in dilute aqueous solution and formed nanoparticles revealed via TEM images. Physically crosslinked nanogels induced by inter‐/intra‐hydrogen bonding or core‐shell micelle particles thus could be obtained by changing environmental conditions. With a well‐defined structure and stimuli‐responsive properties, the P(AA‐b‐NIPAAm‐b‐AA) copolymer is expected to be employed as a nanocarrier for biomedical applications in controlled‐drug delivery and targeting therapy. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1109–1118  相似文献   

9.
Six silicate‐crosslinked oligodimethylsiloxane thin films were prepared by the phosphoric acid (1 mol %) catalyzed condensation of α,ω‐bis(hydroxy)oligodimethylsiloxane (P) and tetrakis(hydroxydimethylsiloxy)silane (Q). Other acid catalysts were evaluated. P and Q were prepared by the Pd‐catalyzed oxidation of the corresponding Si? H compounds with water. The starting materials were characterized by IR and 1H, 13C, and 29Si NMR. A thermal cure was achieved with H3PO4 in 24 h and with poly(phosphoric acid) in 3 h at 110–120 °C. Dynamic mechanical analysis was used to determine the glass‐transition temperatures and to evaluate the mechanical properties of the films. Their thermal stabilities (≥300 °C) in air and N2 were determined by thermogravimetric analysis. Small amounts of non‐crosslinked P were recovered from the films by Soxhlet extractions with CH2Cl2 and analyzed by IR, gel permeation chromatography, and 29Si NMR. The crosslink densities were evaluated by the CH2Cl2 absorption capacities of the films. The surface properties of the films were determined by static and dynamic contact‐angle measurements. Electrochemical impedance spectroscopy was carried out to evaluate the corrosion‐protective properties of the coatings on mild steel as a function of the exposure time to 0.5 N NaCl. The biofoul‐release properties of the films were evaluated with sporelings from mature Ulva linza plants and barnacles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2237–2247, 2006  相似文献   

10.
Novel, well‐defined fluorinated polystyrene was synthesized for the first time via the controlled radical polymerization of styrene through a relatively simple process and was characterized with 1H NMR, 19F NMR, and gel permeation chromatography. The surface properties of polystyrene and poly(acrylonitrile‐co‐butadiene‐co‐styrene) films were modified with the obtained polymers. X‐ray photoelectron spectroscopy measurements of the air‐side surface composition of the modified poly(acrylonitrile‐co‐butadiene‐co‐styrene) films showed that fluorine enriched the outermost surface, resulting in fantastic surface properties that came close to those of poly(tetrafluoroethylene). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3853–3858, 2006  相似文献   

11.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

12.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

13.
Perfluorotetrahydro‐2‐methylene‐furo[3,4‐d][1,3]dioxole (monomer I ) and perfluoro‐2‐methylene‐4‐methoxymethyl‐1,3‐dioxolane (monomer II ) are soluble in perfluorinated or partially fluorinated solvents and readily polymerize in solution or in bulk when initiated by a free‐radical initiator, perfluorodibenzoyl peroxide. The copolymerization parameters have been determined with in situ 19F NMR measurements. The copolymerization reactivity ratios are r I = 1.80 and r II = 0.80 in 1,1,2‐trichlorotrifluoroethane at 41 °C and r I = 0.97 and r II = 0.85 for the bulk polymerization. These data show that this copolymerization pair has a good copolymerization tendency and yields nearly ideal random copolymers. The copolymers have only one glass‐transition temperature from 101 to 168 °C, depending on the copolymer compositions. Melting endotherms have not been observed in their differential scanning calorimetry traces, and this indicates that all the copolymers with different compositions are completely amorphous. These copolymers are thermally stable (the initial decomposition temperatures are higher than 350 °C under an N2 atmosphere) and have low refractive indices and high optical transparency from UV to near‐infrared. Copolymer films prepared by casting were flexible and tough. These properties make the copolymers ideal candidates as optical and electrical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1613–1618, 2006  相似文献   

14.
2,3,4,5,6‐Pentafluoro and 4‐trifluoromethyl 2,3,5,6‐tetrafluoro styrenes were readily copolymerized with methyl methacrylate (MMA) by a free radical initiator. The copolymers were soluble in tetrahydrofuran and acetone. The films obtained were transparent and flexible. The glass transition temperatures (Tgs) of the copolymers were found positively deviated from the Gordon–Taylor equation. The positive deviation could be accounted for by dipole–dipole intrachain interaction between the methyl ester group of MMA and the highly fluorinated aromatic moiety, which resulted in a decrease in the segmental mobility of the polymer chains and the enhanced Tg values of the copolymers. The water absorption of PMMA was greatly decreased by copolymerization of MMA with the highly fluorinated styrenes. With as little as 10 mol % of pentafluoro styrene content in the copolymer, the water absorption was decreased to one‐third of that for pure PMMA. The fluorinated styrenes‐MMA copolymers were thermally stable up to 420 °C under air and nitrogen atmospheres. With 50 mol % of MMA in the copolymer, the copolymer was still stable up to 350 °C. Since these copolymers contain a large number of fluorine atoms, the light absorption in the region of the visible to near infrared is decreased in comparison with nonfluorinated polymers. Thus, these copolymers may be suitable for application in optical devices, such as optical fibers and waveguides. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Bioreducible and core‐crosslinked hybrid micelles were for the first time fabricated from biodegradable and biocompatible trimethoxysilyl‐terminated and disulfide‐bond‐linked block copolymers poly(ε‐caprolactone)‐S‐S‐poly(ethylene oxide), which were prepared by combining thiol‐ene coupling reaction and ring‐opening polymerization. The molecular structures, physicochemical, self‐assembly, and bioreducible properties of these copolymers were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering (DLS), and transmission electron microscopy. The core‐crosslinking sol‐gel reaction was confirmed by 1H NMR, and the core‐crosslinked hybrid micelles contained about 3 wt % of silica. The bioreducible property of both uncrosslinked and core‐crosslinked micelles in 10 mM 1,4‐dithiothreitol (DTT) solution was monitored by DLS, which demonstrated that the PEO corona gradually shedded from the PCL core. The anticancer doxorubicin drug‐loaded micelles showed nearly spherical morphology compared with blank micelles, presenting a DTT reduction‐triggered drug‐release profile at 37 °C. Notably, the core‐crosslinked hybrid micelles showed about twofold drug loading capacities and a half drug‐release rate compared with the uncross‐liked counterparts. This work provides a useful platform for the fabrication of bioreducible and core‐crosslinked hybrid micelles potential for anticancer drug delivery system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A series of multihydroxyl (2, 4, and 8) terminated poly(ethylene glycol)s and their biodegradable, biocompatible, and branched barbell‐like (PLGA)nb‐PEG‐b‐(PLGA)n (n = 1, 2, 4) copolymers have been synthesized. The lengths of the PLGA arms were varied by controlling the molar ratio of monomers to hydroxyl groups of PEG ([LA+GA]0/[? OH]0 = 23, 45, 90). Chemical structures of synthesized barbell‐like copolymers were confirmed by both 1H and 13C‐NMR spectroscopies. Molecular weights were determined by 1H‐NMR end‐group analysis and gel permeation chromatography. The result of hydrolytic degradation indicated that the rate of degradation increased with the increase of arm numbers or with the decrease of arm lengths. The thermal properties were evaluated by using differential scanning calorimetry and a thermogravimetric analysis. The results indicated that the thermal properties of barbell‐like copolymers depended on the structural variations. The morphology of (PLGA)n‐PEG‐(PLGA)n copolymers self‐assembly films were investigated by atomic force microscope, the results indicated that the microphase separation existed in (PLGA)n‐PEG‐(PLGA)n copolymers. Because of the favorable biodegradability and biocompatibility of the PLGA and PEG, these results may therefore create new possibilities for these novel structural amphiphilic barbell‐like copolymers as potential biomaterials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3802–3812, 2008  相似文献   

17.
Novel semi‐interpenetrating polymer networks (SIPNs) based on segmented polyurethane‐urea and poly(N‐isopropylacrylamide‐co‐acrylic acid‐co‐butylmethacrylate) (poly(NIPAM‐co‐AA‐BMA)) were synthesized for the fabrication of silver nanoparticles (AgNPs) in the SIPN system that could be useful for wound dressing applications. The obtained SIPN films, after neutralization, showed high swelling in aqueous environments and good mechanical properties in both dry and hydrated states. Analysis of the dried SIPN films by differential scanning calorimetry and dynamic viscoelastic measurements revealed the presence of crosslinked copolymers as well as homopolymers in the SIPN system. The neutralized swollen SIPN film coordinated with the silver ions (Ag+) that were incorporated into it. AgNPs were subsequently formed by the reduction of Ag+. The formation of AgNPs was characterized by UV‐visible spectroscopy, atomic force microscopy, wide‐angle X‐ray diffraction, and thermogravimetric analysis (TGA). Bactericidal activity tests revealed a distinct zone of microbial inhibition within and around the silver‐doped SIPN films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4950–4962, 2009  相似文献   

18.
Cationic polymerization of tetrahydrofuran (THF) and epichlorohydrin (ECH) was performed with peroxy initiators synthesized from bis (4,4′‐bromomethyl benzoyl peroxide (BBP) or bromomethyl benzoyl t‐butyl peroxy ester (t‐BuBP) and AgSbF6 or ZnCl2 system at 0 °C to obtain the poly(THF‐b‐ECH) macromonomeric peroxy initiators. Kinetic studies were accomplished for poly(THF‐b‐ECH) initiators. Poly(THF‐b‐ECH‐b‐MMA) and poly(THF‐b‐ECH‐b‐S) block copolymers were synthesized by bulk polymerization of methyl methacrylate (MMA) and styrene (S) with poly(THF‐b‐ECH) initiators. The quantum chemical calculations for the block copolymers, the initiating systems of the cationic polymerization of THF and ECH were achieved using HYPERCHEM 7.5 program. The optimized geometries of the polymers were investigated with the quantum chemical calculations. Poly(THF‐b‐ECH) initiators having peroxygen groups were used for graft copolymerization of polybutadien (PBd) to obtain poly(THF‐b‐ECH‐g‐PBd) crosslinked graft copolymers. The graft copolymers were investigated by sol‐gel analysis. Swelling ratio values of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by FTIR, 1H NMR, GPC, SEM, TEM, and DSC techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2896–2909, 2010  相似文献   

19.
The partly fluorinated monomers, 2,2,2‐trifluoroethyl methacrylate (3FM), 2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate (8FM), and 1,1,2,2‐tetrahydroperfluorodecyl methacrylate (17FM) have been used in the preparation of block copolymers with methyl methacrylate (MMA), 2‐methoxyethyl acrylate (MEA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization. A kinetic study of the 3FM homopolymerization initiated with ethyl bromoisobutyrate and Cu(I)Br/N‐(n‐propyl)‐2‐pyridylmethanimine reveals a living/controlled polymerization in the range 80–110 °C, with apparent rate constants of 1.6 · 10−4 s−1 to 2.9 · 10−4 s−1. Various 3FM containing block copolymers with MMA are prepared by sequential monomer addition or from a PMMA macroinitiator in all cases with controlled characteristics. Block copolymers of 3FM and PEGMA resulted in block copolymers with PDI < 1.22, whereas block copolymers from 3FM and MEA have less controlled characteristics. The block copolymers based on MMA with 8FM and 17 FM have PDI's < 1.30. The glass transition temperatures of the block copolymers are dominated by the majority monomer, as the sequential monomer addition results in too short pure blocks to induce observable microphase separation. The thermal stability of the fluorinated poly((meth)acrylate)s in inert atmosphere is less than that of corresponding nonfluorinated poly((meth)acrylate)s. The presence of fluorinated blocks significantly increases the advancing water contact angle of thin films compared to films of the nonfluorinated poly((meth)acrylate)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8097–8111, 2008  相似文献   

20.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号