首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The authors describe a rapid and sensitive method for the determination of the activity of scavenging hydrogen peroxide in which glucose oxidase–stabilized gold nanoclusters (AuNCs) were employed as a fluorescent nanoprobe. The AuNCs are synthesized by a biomineralization process and display an intense blue fluorescence peaking at 450 nm and a quantum yield of 1.1% under 360–nm excitation. The Fenton reaction induces quenching of fluorescence, and this effect can be used to determine H2O2 in the 0.5 to 10 μmol?L?1 concentration range. The substances displaying H2O2 scavenging activity prevent quenching and thus restore fluorescence. The intensity of restored fluorescence is directly related to the H2O2 scavenging activity of the antioxidant. The method was applied to the determination of the H2O2 scavenging activity of the model antioxidants ascorbic acid and tartaric acid which gave IC50 values of 7.4 and 19.1 μmol?L?1, respectively.
Graphical abstract Blue-emitting gold nanoclusters (AuNCs) were prepared by using GOx as both the reducing and stabilizing agents. The Fenton reaction induces quenching of fluorescence of the AuNCs, and is employed for fluorometric measurement of the H2O2 scavenging activity of the model antioxidants ascorbic acid and tartaric acid.
  相似文献   

2.
Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity.
Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.
  相似文献   

3.
Nanocomposites consisting of gold nanoclusters and graphene oxide (AuNC/GO) were prepared and investigated with respect to the design of new sensors for hydrogen peroxide (H2O2). The AuNC/GO hybrid nanomaterials were deposited on a gold electrode by the layer-by-layer assembly method, where they showed enhanced photoelectrical and sensing properties. The presence of graphene oxide improves the photoinduced electron separation efficiency of the AuNCs, as well as the catalytic effect of AuNCs on the electroreduction of H2O2. Compared to an electrode modified with AuNCs only, the new electrodes display a more than ten-fold enhanced photocurrent at a working voltage of -500 mV (vs. Ag/AgCl), higher sensitivity for H2O2 (25.76 nA?mM?1), lower LOD (2 μM) and extended linear range (from 30 μM to 5 mM). The sensors were applied to the determination of H2O2 extracted from living human umbilical vein endothelial cells stimulated by angiotensin II.
Graphical abstract Graphene oxide (GO) not only improves the photoinduced charge separation efficiency of fluorescent gold nanoclusters (AuNCs) based photoelectrochemical sensors, but also enhances the catalytic property of AuNCs on the detection of hydrogen peroxide (H2O2).
  相似文献   

4.
The authors described gold nanoclusters (AuNCs) for use on an “on ? off ? on” NIR fluorescent probe for the determination of citrate and Cu(II) ion. The AuNCs were prepared by a microwave-assisted method using BSA as both the stabilizing and reducing agent. The resulting BSA-capped AuNCs display NIR fluorescence peaking at 680 nm under 500 nm excitation, a quantum yield of ~6.0%, an average size of 2.8 ± 0.5 nm, water-dispersibility, stability and biocompatibility. The on?off probe for Cu(II) is based on the interaction between Cu(II) and BSA which causes the fluorescence of the BSA?AuNCs to be quenched. The quenched fluorescence is recovered on addition of vitamin C (VC), obviously due to complexation of Cu(II) by citrate. The probe was employed to image Cu(II) and citrate in HeLa cells and in aqueous solutions. The method works in the 20 nM to 0.1 mM concentration range for Cu(II), and in the 8 nM to 120 μM concentration range for VC.
Graphical abstract Schematic presentation of the gold nanocluster based probe whose fluorescence is quenched by Cu(II) ions and then restored by addition of vitamin C. This is demonstrated for both aqueous solutions and living cells.
  相似文献   

5.
Gold-silver nanoclusters (Au-AgNCs) were synthesized by simultaneous chemical reduction of Au(III) and Ag(I) ions in one pot, using bovine serum albumin as both a template and a reductant. The Au-AgNCs have an average size of 2.4 nm and display strong red fluorescence (with an emission peak at 610 nm on excitation at 360 nm). The fluorescence quantum yield can reach 18.6%. Fluorescence is strongly quenched by hypochlorite, while other common anions have minor (or no) effects on fluorescence. Based on these findings, a fluorometric method was developed for the determination of hypochlorite. The method has a linear response in the 0.7 to 15 μM concentration range, with a limit of detection as low as 80 nM. It was successfully applied to the determination of hypochlorite in (spiked) tap water.
Graphical abstract Gold-silver nanoclusters with strong red fluorescence were synthesized by simultaneous chemical reduction of Au(III) and Ag(I) ions in one pot, and a sensitive and selective method for the detection of hypochlorite was developed based on the quenching of the fluorescence of the nanoclusters.
  相似文献   

6.
This paper describes a CdTe quantum dot-based fluorescence resonance energy transfer (FRET) based assay for the detection of the breast cancer biomarker microRNA. The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and CdTe QDs. Interaction between double strand oligonucleotide and QDs can be detected qualitatively through gel analysis and quantitatively by the signal amplification from AgNCs to QDs via FRET, best measured at an excitation wavelength of 350 nm and at emission wavelengths of 550 and 590 nm. Three microRNAs (microRNA-21, microRNA-155 and Let-7a) were quantified to verify the feasibility of the method, and a high sensitivity for microRNAs was achieved. Fluorescence intensity increases linearly with the log of the concentration of microRNA 155 in the 5.0 pM to 50 nM range, with a 1.2 pM detection limit.
Graphical abstract Schematic presentation of a quantum dot-based (QD-based) fluorescence resonance energy transfer technique for the detection of microRNA (miRNA). The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and QDs.
  相似文献   

7.
Stable copper nanoclusters (CuNCs) were prepared by utilizing D-penicillamine as both the stabilizer and reductant. The emission of the CuNCs (with excitation/emission peaks at 390/645 nm) is largely stabilized by coating with poly(sodium-p-styrenesulfonate) (PSS). Cytochrome c (Cyt c) quenches the fluorescence of the PSS-coated CuNCs, and this effect was exploited to design a quenchometric fluorometric assay for Cyt c. If trypsin is added to the loaded CuNCs, it will hydrolyze Cyt c to form peptide fragments, and fluorescence is gradually restored. A highly sensitive and fluorometric turn-off-on assay was constructed for sequential detection of Cyt c and trypsin. The linear ranges for Cyt c and trypsin are from 8.0 nM to 680 nM, and from 0.1 to 6.0 μg mL?1, and the lower detection limits are 0.83 nM and 20 ng mL?1 for Cyt c and trypsin, respectively.
Graphical abstract Schematic illustration of the fluorometric assay for trypsin based on the electron transfer between poly(p-styrenesulfonate)-protected copper nanoclusters (PSS-CuNCs) and cytochrome c (Cyt c).
  相似文献   

8.
A composite material consisting of multiwalled carbon nanotubes and palladium containing particles was synthesized and applied to the preparation of bulk-modified screen-printed carbon electrodes (Pd-MWCNT-SPCE) and surface-modified screen-printed carbon electrodes (Pd-MWCNT/SPCE). They were characterized by cyclic voltammetry and hydrodynamic chronoamperometry in solution of pH 7.5. Both electrodes were then modified with glucose oxidase (GOx) by drop-coating a solution of GOx and Nafion® on their surface. Glucose can be determined via enzymatically formed H2O2. In an alternative approach, gold nanoparticles (5 nm) were incorporated into the biolayer of the electrodes. The resulting electrodes of type GOx/Pd-MWCNT-SPCE and GOx-Au/Pd-MWCNT-SPCE showed acceptable analytical performance at working potentials between ?0.20 V and ?0.50 V in case of hydrodynamic chronoamperometry. Both electrodes can be operated best at a working potential of ?0.40 V vs SCE, with acceptable linearity of the methods in sub mM concentration ranges and with LOQs of 0.14 mM and 0.07 mM for glucose for the GOx/Pd-MWCNT-SPCE and GOx-Au/Pd-MWCNT-SPCE, respectively. Incorporation of gold nanoparticles prolongs the operational lifetime of the electrodes by two weeks. The GOx/Pd-MWCNT-SPCE based method was applied to the determination of glucose in multifloral honey, and the GOx-Au/Pd-MWCNT-SPCE method to the determination of glucose in blood serum. In both cases there was a good agreement with the results obtained by commercially available equipment for determination of glucose.
Graphical abstract Schematic of a screen printed carbon biosensor based on the use of multiwalled carbon nanotubes modified with palladium-containing particles and glucose oxidase. It can be applied to the amperometric determination of glucose in blood serum and multifloral honey
  相似文献   

9.
A facile, one-pot green method is presented for the preparation of water-soluble luminescent copper nanoclusters (Cu-NCs) from copper dichloride and cysteine as the precursor and stabilizer, respectively. The Cu-NCs are characterized by high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, fluorescence, UV–Vis, and Raman spectroscopy. The Cu-NCs have an average size of 3.5 nm and are stable in aqueous solution at least for 2 weeks. Under photo excitation with 365 nm light, the Cu-NCs display strong green fluorescence with the maximum of emission at 490 nm and a quantum yield of 5.6 %. Fluorescence is quenched by Cr(VI) ion, and this effect was exploited to develop a highly selective method for the determination of Cr(VI). The detection limit of this probe is as low as 43 nM.
Graphical Abstract A facile, one-pot, “green” synthetic route was developed for preparing water-soluble luminescent copper nanoclusters (CuNCs) by using copper chloride and cysteine as the precursor and stabilizer, respectively. Their fluorescence is quenched by Cr(VI) ion, and this is exploited in a sensitive assay for Cr(VI) ions.
  相似文献   

10.
A composite was prepared from a Co(II)-based zeolitic imidazolate framework (ZIF-67) and graphene oxide (GO) by an in situ growth method. The material was electrodeposited on a glassy carbon electrode (GCE). The modified GCE was used for the simultaneous voltammetric determination of dopamine (DA) and uric acid (UA), typically at working potentials of 0.11 and 0.25 V (vs. SCE). The morphology and structure of the nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The modified electrode exhibits excellent electroanalytical performance for DA and UA owing to the synergistic effect of the high electrical conductivity of GO and the porosity of ZIF-67. By applying differential pulse voltammetry, a linear response is found for DA in the 0.2 to 80 μM concentration range, and for UA between 0.8 and 200 μM, with detection limits of 50 and 100 nM (at S/N =?3), respectively. Further studies were performed on the effect of potential interferents, and on electrode stability and reproducibility. The modified GCE was applied to the simultaneous detection of DA and UA in spiked human urine and gave satisfying recoveries.
Graphical abstract Schematic of the preparation procedure of GO-ZIF67 and electrochemical reaction mechanisms of UA and DA at the GO-ZIF67-modified glassy carbon electrode (GCE). GO: graphene oxide; ZIF-67: Co(II)-based zeolitic imidazolate framework.
  相似文献   

11.
A method is described for ratiometric fluorometric assays of H2O2 by using two probes that have distinct response profiles. Under the catalytic action of ferrous ion, the 615 nm emission of protein-stabilized gold nanoclusters (under 365 nm photoexcitation) is quenched by H2O2, while an increased signal is generated with a peak at 450 nm by oxidizing coumarin with the H2O2/Fe(II) system to form a blue emitting fluorophore. These decrease/increase responses give a ratiometric signal. The ratio of the fluorescences at the two peaks are linearly related to the concentration of H2O2 in the range from 0.05 to 10 μM, with a 7.7 nM limit of detection. The detection scheme was further coupled to the urate oxidase catalyzed oxidation of uric acid which proceeds under the formation of H2O2. This method provides an simple and effective means for the construction of ratiometric fluorometric (enzymatic) assays that involve the detection of H2O2.
Graphical abstract Under catalysis by ferrous ion, hydrogen peroxide quenches the luminescence of gold nanoclusters (AuNCs) and oxidizes coumarin into a fluorescent derivative, which rendered fluorescence ON and OFF at two distinct wavelengths for ratiometric measurements.
  相似文献   

12.
Graphene oxide (GO), nanosized Fe3O4 and zeolite imidazolate framework-8 (ZIF-8) were hybridized as a multifunctional sorbent for use in microextraction. The sorbent was characterized by SEM, TEM, XRD and FTIR. The composite is porous, has a high specific surface (> 600 m2·g?1) and is paramagnetic. The GO sheets are shown to act as carriers for the Fe3O4 nanoparticles and ZIF-8. The composite is a viable material for the preconcentration of atorvastatin and simvastatin from urine prior to their determination by HPLC with PDA detection. The limits of detection are 116 and 387 pg·mL?1, respectively. Recoveries from spiked urine samples range between 84.7 and 95.7%, with relative standard deviation of ≤4.5%. Enrichment factors range from 169 to 191. The method was successfully applied to the determination of atorvastatin in urine. Moreover, this sorbent is regenerable and recyclable for at least seven times without obvious decrease in performance.
Graphical abstract A composite sorbent composed of a zeolite imidazolate framework, Fe3O4 and graphene oxide was applied to the extraction of statins in urine prior their determination by HPLC.
  相似文献   

13.
The authors report on a one-pot approach for synthesizing highly fluorescent protamine-stabilized gold nanoclusters. These are shown to be a viable nanoprobe for selective and sensitive fluorometric determination of lead(II) via quenching of fluorescence via Pb(II)-Au(I) interaction. Under optimized conditions, fluorescence measured at excitation/emission peaks of 300/599 nm drops in the 80 nM–15 μM lead(II) concentration range. The detection limit is 24 nM, and relative standard deviations (for n?=?11) at concentrations of 0.10, 4.0 and 15 μM are 1.6, 2.5 and 1.9%, respectively. The relative recoveries of added lead(II) in the water samples ranged from 97.9?±?2.29% to 101.2?±?1.83%.
Graphical abstract Lead(II) ions are found to be able to selectively and sensitively quench the fluorescence of the protamine-gold nanoclusters (PRT-AuNCs). Thereby, an inexpensive, selective and sensitive lead(II) assay was established.
  相似文献   

14.
The authors report on a new approach for the determination of the breast cancer biomarker microRNA-155 (miRNA-155). It is based on the measurement of the fluorescence shift of oligonucleotide-templated copper nanoclusters (DNA-CuNC). A probe DNA was designed that acts as a template for the preparation of CuNC which, under 400 nm excitation, exhibit strong fluorescence enhancement at 490 nm and a 90 nm Stokes shift after binding to target miRNA-155 and formation of a DNA-RNA heteroduplex. Under the optimal conditions, the fluorescence of the DNA-CuNC increases with increasing concentration of miRNA-155 in the range from 50 pM to 10 nM, with a 11 pM detection limit. The assay has excellent selectivity over noncomplementary RNA. The method was applied to the determination of miRNA-155 in the presence of human plasma and saliva.
Graphical abstract Schematic of the detection strategy that relies on the fluorescence shift of DNA-CuNCs resulting from the specific binding of DNA-CuNCs with target miRNA-155. Fluorescence intensities are linearly proportional to the concentrations of target RNA from 50 pM to 10 nM.
  相似文献   

15.
The authors describe enzyme based nanobiosensors for continuous monitoring of glucose, with the long term goal of using them as smart diagnostic tattoos. The method is founded on two main features: (1) The fluorescence intensity and decay times of glucose oxidase (GOx) and of GOx labeled with fluorescein (FS) or a ruthenium chelate (Ru) reversibly change during interaction with glucose; (2) The (labeled) enzyme is linked to magnetite magnetic nanoparticles (MNPs) which permits the MNPs to be physically manipulated. It is found that a stable link between MNPs and GOx is only accomplished if the number of amino groups on the GOX is artificially enlarged (to form GOxsam). Fluorescence decay data are best acquired with 8-nm MNPs where scattering is marginal; The activity of GOx is found not to be affected by immobilization on the MNPs. The various immobilized enzymes (GOxsam, GOxsam-FS and GOxsam-Ru; all on MNPs) differ only slightly in terms of linear response to glucose which ranged from 0.5 mM to at least 3.5 mM. The RSDs are about 5% (for n = 5), the detection limits are at ~50 μM, and the sensor lifetimes are >1 week.
Graphical abstract Nanobiosensors consisting of Fe3O4 magnetic nanoparticles linked to glucose oxidase, previously enriched with amino groups (GOxsam) and containing fluorescein (FS) or a ruthenium derivative (Ru), are presented as a new kind of smart tattoos for glucose monitoring.
  相似文献   

16.
Copper nanoclusters (Cu-NCs) were prepared by reducing CuCl2 with ascorbic acid in the presence of the short peptide template Cys-Cys-Cys-Asp-Leu. They were characterized by UV-vis absorption and fluorescence spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The Cu-NCs have a size of ~2 nm, can be well dispersed in water and are photostable. Their fluorescence (peaking at 425 nm under 365-nm excitation) is quenched by Fe(III) ions. Based on this finding, a sensitive and selective fluorescence assay for the detection of Fe(III) was developed. Under optimized conditions and a pH value of 2.0, the assay displays a linear response in the 0.05 to 30 μM Fe(III) concentration range, with a detection limit of 20 nM based on an S/N ratio of 3. The assay was successfully applied to the determination of Fe(III) in spiked human serum where is gave recoveries that ranged from 96.2 % to 98.3 %.
Graphical abstract Copper nanoclusters (Cu-NCs) were prepared by reducing CuCl2 with ascorbic acid with peptide as the template. The fluorescence of Cu-NCs is quenched by Fe(III) ions with a linear response in the 0.05 to 30 μM of Fe(III) concentration range.
  相似文献   

17.
The authors describe a fluorometric glucose assay that is based on the use of MnO2 nanosheets and copper nanoclusters (CuNCs) acting as nanoprobes. The CuNCs were synthesized by using bovine serum albumin as a template by chemical reduction of copper(II) sulfate. On addition of MnO2 nanosheets to a colloidal solution of CuNCs, the fluorescence of CuNCs (measured at excitation/emission wavelengths of 335/410 nm) is quenched. However, in the presence of enzymatically generated H2O2, the MnO2 nanosheets are reduced to form Mn(II) ions. As a result, fluorescence intensity recovers. The glucose assay is based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2 and glucuronic acid. The calibration plot is linear in the 1 μM to 200 μM glucose concentration range, and the detection limit is 100 nM. The method was successfully applied to the determination of glucose in spiked human serum samples.
Graphical abstract A sensitive fluorescent bioassay is reported for the detection of glucose based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO2 nanosheets and copper nanoclusters (CuNCs).
  相似文献   

18.
The authors describe a method for the preparation of orange-red emissive carbon dots (CDs) with excitation/emission peaks at 520/582 nm. The CDs were hydrothermally prepared by a one-pot strategy from trimesic acid and 4-aminoacetanilide. The fluorescence of the CDs is strongly quenched by hydrogen peroxide. The oxidation of glucose by glucose oxidase (GOx) produces H2O2 that quenches the fluorescence via static quenching. Based on this phenomenon, a fluorometric method was established for the determination of glucose. Under the optimum conditions, response is linear in the 0.5 to 100 μM glucose concentration range, with a 0.33 μM limit of detection. The method is selective for glucose over its analogues and was successfully applied to the determination of glucose in diluted human serum and in urine from diabetics and healthy individuals. Recoveries from spiked samples range from 98.7 to 102.5%.
Graphical abstract (a) One-step synthetic strategy of the CDs; (b) Schematic illustration of the CDs for glucose detection
  相似文献   

19.
This study describes an amperometric sensor for hydrogen peroxide (H2O2) that uses an ITO glass electrode which was modified with a nanocomposite consisting of electrochemically reduced graphene oxide and gold nanoclusters (AuNCs). The sensor was used to quantify extracellular H2O2 released from human neuroblastoma cells of type SH-SY5Y. The calibration plot, established best at a working voltage of ?0.4 V (vs. Ag/AgCl) is linear in the 40 nmol?L?1 to 2 μmol?L?1 concentration range, and the detection limit is 20 nmol?L?1 (at a signal-to-noise ratio of 3). The method was further applied to study bupivacaine-induced cell damage and the protective effects of α-lipoic acid. The study indicated that pretreatment of the cells with lipoic acid retards cell damage induced by bupivacaine. The sensor can be easily fabricated, is disposable and highly sensitive. The sensor is perceived to represent an alternative for studying the interactions of drugs with cells, and as an effective tool to quantify cell-secreted H2O2.
Graphical abstract One-step electrochemical synthesis of graphene oxide and gold nanoclusters on an ITO electrode for studying the release of H2O2 from SH-SY5Y cells and for evaluation of drug-induced cell damage
  相似文献   

20.
The authors describe an immunoassay for the determination of carcinoembryonic antigen (CEA) tumor markers by depositing a polydopamine-Pb(II) nanocomposite on the surface of a glassy carbon electrode. The nanocomposite acts as a redox system that displays a large specific surface and provides a strong current signal at ?0.464 V (vs. Ag/AgCl). After the deposition of PDA-Pb2+ on glassy carbon electrode, the electrode was additionally coated with a chitosan-gold nanocomposite. The immunoassay platform was obtained by immobilization of antibodies against carcinoembryonic antigens by using glutaraldehyde and blocking with bovine albumin. Owing to its large surface, good electrical conductivity and powerful current response, the immunoassay has a wide linear range that extends from 1 fg·mL?1 to 100 ng·mL?1, with a detection limit as low as 0.26 fg·mL?1. The results obtained with this immunoassay when determining CEAs in human serum were found to be consistent with those obtained by ELISAs.
Graphical abstract Schematic of an ultrasensitive electrochemical immunosensor for the carcinoembryonic antigen. It is based on a glassy carbon electrode modified with a polydopamine-Pb(II) nanocomposite acting as a signal-inherent substrate.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号