首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel water‐soluble triply‐responsive homopolymers of N,N‐dimethylaminoethyl methacrylate (DMAEMA) containing an azobenzene moiety as the terminal group were synthesized by atom transfer radical polymerization (ATRP) technique. The ATRP process of DMAEMA was initiated by an azobenzene derivative substituted with a 2‐bromoisobutyryl group (Azo‐Br) in the presence of CuCl/Me6TREN in 1,4‐dioxane as a catalyst system. The molecular weights and their polydispersities of the resulting homopolymers (Azo‐PDMAEMA) were characterized by gel permeation chromatography (GPC). The homopolymers are soluble in aqueous solution and exhibit a lower critical solution temperature (LCST) that alternated reversibly in response to Ph and photoisomerization of the terminal azobenzene moiety. It was found that the LCST increased as pH decreased in the range of testing. Under UV light irradiation, the trans‐to‐cis photoisomerization of the azobenzene moiety resulted in a higher LCST, whereas it recovered under visible light irradiation. This kind of polymers should be particularly interesting for a variety of potential applications in some promising areas, such as drug controlled‐releasing carriers and intelligent materials because of the multistimuli responsive property. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2564–2570, 2010  相似文献   

2.
A reflection cloud point technique allows for rapid screening of light‐dependent phase separation temperatures of thermo‐ and photoresponsive polymer/ionic liquid solutions as a function of sample thickness, molecular weight, and copolymer composition. We systematically investigate the lower critical solution temperature (LCST) phase behavior of poly(benzyl methacrylate‐stat‐(4‐phenylazophenyl methacrylate)). Under UV light, the photoresponsive azobenzene‐based repeat unit becomes more polar as the cis form dominates, increasing its solubility in the ionic liquids 1‐ethyl‐3‐methyl imidazolium and 1‐butyl‐3‐methyl imidazolium bis(trifluoromethanesulfonyl)imide. This light‐dependent polarity change leads to two phase separation temperatures, depending on the illumination wavelength. Under visible light, which drives the azobenzene moiety into the trans ground state, the LCST shows no sample thickness dependence. Under UV light, however, sample thickness plays a significant role. Samples of around 1 mm thickness show no apparent difference under UV and visible light, whereas thinner samples show an increasing difference between the phase separation temperatures with decreasing sample thickness. Neither phase separation temperature exhibits a significant dependence on molecular weight. Increasing the photoresponsive monomer content did not lead to an increase in the difference between the phase separation temperatures at fixed thickness, due to a concomitant increase in UV light absorbed at the sample surface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 281–287  相似文献   

3.
This article reports on studies regarding the photoisomerization kinetics and self‐assembly behaviors of two photoresponsive diblock copolymers, poly(4‐acetoxystyrene)‐block‐poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl acrylate] (poly(StO54b‐Cazo9) and poly(StO54b‐Cazo5)), which dissolved in a THF/H2O solution through two‐step reverse addition‐fragmentation transfer polymerization. We examined the effect of heating methods (i.e., conventional and microwave heating) on the polymerization kinetics of a 4‐acetoxystyrene‐based macrochain transfer agent (StO macro‐CTA). The kinetics studies on the homopolymerization of StO by using microwave heating demonstrated controllable characteristics with relatively narrow polydispersities at ~1.14. The diblock copolymers exhibited moderate thermal stability, with thermal decomposition temperatures greater than 343.3 °C, suggesting that the enhancement of the thermal stability was due to the incorporation of azobenzene segments into block copolymers. Poly(StO54b‐Cazo9) showed lower photoisomerization rate constants (kt = 0.039 s?1) compared with Cazo monomer (kt = 0.097 s?1). Micellar aggregates with a mean diameter of approximately 238.3 nm were formed by gradually adding water to the THF solution (water content = 10 vol %), and are shown in SEM and TEM images of the diblock copolymer. The results of this study contribute to the literature regarding the development of photoresponsive polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3107–3117  相似文献   

4.
A novel multiresponsive poly(ether tert‐amine) (PEA) was synthesized by nucleophilic addition/ring‐opening reaction of commercial poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and di‐epoxy and di‐amine monomer. The process of synthesis was very simple and green in ethanol as reactive media. These PEAs exhibit sharp response to temperature, pH, and ionic strength, with adjustable and sharp phase transitions in the range of 27–100 °C. The lower critical solution temperature (LCST) of PEA's aqueous solution presents a linear relationship to the PEO content (y = 35.7 + x), indicating well‐tunable LCST. The concentration of PEA has no obvious effect on LCST. Therefore, PEA will be potential in applications of drug delivery, separation, and biotechnology. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1292–1297, 2009  相似文献   

5.
A photoresponsive oil sorber (POS) with a hydrophobic, photoresponsive core and shell has been synthesized via suspension polymerization. Lauryl acrylate, isodecyl acrylate, and tert‐butylstyrene were used as monomers, 4‐(methacrylamino)azobenzene (Azo‐M) used as photoresponsive monomer, and bis(methacryloylamino)azobenzene (Azo‐CL‐M) used as photoresponsive surface crosslinker. The POS prefers nonpolar solvents. It absorbed 15 times its dry weight in toluene, 19 times its dry weight in chloroform, and 16 times its dry weight in dichloromethane. Rapid and photoresponsive desorption of solvent (86% of solvent expulsed in 30 min) was characteristic. POS is an excellent gasoline absorber rapidly increasing its body weight in its presence. The new POS is less dense than water, and can potentially be used for cleaning oil spills on water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 55–62, 2010  相似文献   

6.

Three kinds of photoresponsive copolymers with azobenzene side chains were synthesized by radical polymerization of N‐4‐phenylazophenylacrylamide (PAPA) with N‐isopropylacrylamide (NIPAM), N,N‐diethylacrylamide (DEAM) or N,N‐dimethylacrylamide (DMAM) respectively. Their structures were characterized by FT‐IR, 1H‐NMR and UV/Vis spectroscopy. Their reversible photoresponses were studied with or without α‐cyclodextrin (α‐CD), which showed that both the copolymers and their inclusion complexes with α‐CD underwent rapid photoisomerization. The lower critical solution temperature (LCST) of the copolymers and their inclusion complexes with α‐CD were investigated by cloud point measurement, which showed that the LCST of three kinds of copolymers increased largely after adding α‐CD. After UV irradiation on the solutions of copolymers and their inclusion complexes, the LCST of the copolymers increased slightly with the absence of α‐CD, while decreased largely with the presence of α‐CD. Furthermore, the LCST reverted to its originality after visible light irradiation. This change of LCST could be reversibly controlled by UV and visible light irradiation alternately. In particular, in the copolymer of PAPA and DMAM, the reversible water solubility of the inclusion complexes could be triggered by alternating UV and visible light irradiation.  相似文献   

7.
Multistimuli‐responsive precise morphological control over self‐assembled polymers is of great importance for applications in nanoscience as drug delivery system. A novel pH, photoresponsive, and cyclodextrin‐responsive block copolymer were developed to investigate the reversible morphological transition from micelles to vesicles. The azobenzene‐containing block copolymer poly(ethylene oxide)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐6‐(4‐phenylazo phenoxy)hexyl methacrylate) [PEO‐b‐P(DEAEMA‐co‐PPHMA)] was synthesized by atom transfer radical polymerization. This system can self‐assemble into vesicles in aqueous solution at pH 8. On adjusting the solution pH to 3, there was a transition from vesicles to micelles. The same behavior, that is, transition from vesicles to micelles was also realizable on addition of β‐cyclodextrin (β‐CD) to the PEO‐b‐P(DEAEMA‐co‐PPHMA) solution at pH 8. Furthermore, after β‐CD was added, alternating irradiation of the solution with UV and visible light can also induce the reversible micelle‐to‐vesicle transition because of the photoinduced trans‐to‐cis isomerization of azobenzene units. The multistimuli‐responsive precise morphological changes were studied by laser light scattering, transmission electron microscopy, and UV–vis spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
The effects of solvency and mole fraction of azobenzene moieties (fPAzoMA) on the photoresponsive and fluorescence behaviors of poly(acrylic acid)‐block‐poly(6‐[4‐(4′‐methoxyphenylazo)phenoxy]hexyl methacrylate) (PAA‐PAzoMA) amphiphilic diblock copolymers were investigated using UV–vis spectroscopy and fluorescence spectroscopy. The photoresponsive behavior depended strongly on the solvency and fPAzoMA. When dissolved in a PAA‐selective solvent, PAA‐PAzoMA formed micelles with PAzoMA in the micelle core. The confinement of azobenzene moieties caused a steric hindrance, thereby markedly reducing the kinetics of photoisomerization compared with that of the unconfined PAA‐PAzoMA in a nonselective solvent. Additionally, PAA‐PAzoMA dissolved in the PAA‐selective solvent caused a blue shift of the maximum absorbance, suggesting the formation of H‐aggregates of azobenzene mesogens. The high H‐aggregate content substantially reduced the fluorescence emission. Consequently, the fluorescence emission of PAA‐PAzoMA in the nonselective solvent was more intense than that in the PAA‐selective solvent. Upon UV irradiation, the enhanced bent‐shaped cis isomers disturbed the compact packing of azobenzene mesogens, which substantially enhanced the fluorescence emission. Both the photoisomerization rate and fluorescence emission decreased with an increase in fPAzoMA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 793–803  相似文献   

9.
Partial modification of the nonionic polymer poly(N‐2‐hydroxy‐propylmethacrylamide) by cinnamate produces stimuli‐responsive copolymers. The hydrophobic character of the cinnamate chromophore induces not only a lower critical solution temperature (LCST) in water, but renders additionally the polymers photoresponsive. For moderate cinnamate contents of 9 mol‐%, the photoisomerization of the trans‐cinnamate to cis‐cinnamate groups allows to switch the LCST by irradiation, whereas for higher cinnamate contents of 21 mol‐%, irradiation leads to intra‐ and intermolecular photocrosslinking.  相似文献   

10.
Photoresponsive molecularly imprinted nanocavities were prepared using a newly designed functional monomer bearing a photoresponsive spiropyran moiety with a carboxy group that can interact with atrazine (the template molecule), in which the spiropyran moiety was incorporated into the binding cavities. Spectrophotometric analysis confirmed that the spiropyran moiety was photoresponsive even after polymerization. The selectivity of the EDMA‐based molecularly imprinted polymer (MIPEDMA) was tested to examine the binding behavior of atrazine and other agrochemicals, revealing that the atrazine‐imprinted polymer can bind selectively to triazine herbicides. Photo‐triggered switching of the binding activity in MIPEDMA was investigated, and the binding activity was found to decrease dramatically after UV light irradiation, suggesting that the spiropyran moiety in the binding cavities was transformed to the merocyanine form, resulting in unfavorable translocation of the carboxy group for atrazine binding. Consequently, the spiropyran‐based MIPEDMA demonstrated in this study could open a way to realizing reliable photoresponsive smart materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1637–1644  相似文献   

11.
The multi‐thermo‐responsive block copolymer of poly[2‐(2‐methoxyethoxy)ethyl methacrylate]‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PMEO2MA‐b‐PVEA) displaying phase transition at both the lower critical solution temperature (LCST) and the upper critical solution temperature (UCST) in the alcohol/water mixture is synthesized by reversible addition‐fragmentation chain transfer polymerization. The poly[2‐(2‐methoxyethoxy)ethyl methacrylate] (PMEO2MA) block exhibits the UCST phase transition in alcohol and the LCST phase transition in water, while the poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PVEA) block shows the UCST phase transition in isopropanol and the LCST phase transition in the alcohol/water mixture. Both the polymer molecular weight and the co‐solvent/nonsolvent exert great influence on the LCST or UCST of the block copolymer. By adjusting the solvent character including the water content and the temperature, the block copolymer undergoes multiphase transition at LCST or UCST, and various block copolymer morphologies including inverted micelles, core‐corona micelles, and corona‐collapsed micelles are prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4399–4412  相似文献   

12.
Fully atomistic molecular dynamics simulations of poly(2‐[2‐methoxyethoxy]ethyl methacrylate) (PMEO2MA) in water at temperatures below and above its lower critical solution temperature (LCST) were performed to improve the understanding of its LCST behavior. Atomic trajectories were used to calculate various structural and dynamic properties. Simulation results show that PMEO2MA undergo a distinct coil‐to‐globule transition above LCST. Detailed analyses of the number of first hydration shell water molecules around various atomic regions are revealed that the water solubility of PMEO2MA below LCST is mainly provided by the hydrophobic hydration around the side chain carbon atoms. This is achieved by the cage‐like water network formations which are disrupted when the temperature is increased above LCST, accompanied by significant amount of water molecule release and local water‐ordering reduction, which leads to the LCST phase transition. Furthermore, other analyses such as the number of hydrogen bonds and hydrogen bond lifetimes suggest that intermolecular hydrogen bondings between polymer and water molecules have little effect on the phase transition. Our results will contribute to a better understanding on the LCST phase transition of oligo(ethylene glycol) methyl ether methacrylate (OEGMA)‐based homopolymers at atomistic level that will be useful when designing homo‐ and co‐polymers of OEGMAs with desired properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 429–441  相似文献   

13.
Two chiral amphiphilic diblock copolymers with different relative lengths of the hydrophobic and hydrophilic blocks, poly(6‐O‐p‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose)‐b‐poly(N‐isopropylacrylamide) or poly(VBCPG)‐b‐poly(NIPAAM) and poly(20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one methacrylate)‐b‐poly(N‐isopropylacrylamide) or poly(MAC‐HPD)‐b‐poly(NIPAAM) were synthesized via consecutive reversible addition‐fragmentation chain‐transfer polymerizations of VBCPG or MAC‐HPD and NIPAAM. The chemical structures of these diblock copolymers were characterized by 1H nuclear magnetic resonance spectroscopy. These amphiphilic diblock copolymers could self‐assemble into micelles in aqueous solution, and the morphologies of micelles were investigated by transmission electron microscopy. By comparison with the lower critical solution temperatures (LCST) of poly(NIPAAM) homopolymer in deionized water (32 °C), a higher LCST of the chiral amphiphilic diblock copolymer (poly(VBCPG)‐b‐poly(NIPAAM)) was observed and the LCST increased with the relative length of the poly(VBCPG) block in the copolymer from 35 to 47 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7690–7701, 2008  相似文献   

14.
A double‐responsive amphiphilic random copolymer (P(OEtOxA)‐ran‐PNBA) composed of thermoresponsive poly(oligo(2‐ethyl‐2‐oxazoline)acrylate) (P(OEtOxA)) segments and photocleavable poly(2‐nitrobenzyl acrylate) (PNBA) segments is synthesized via combination of cationic ring‐opening polymerization (CROP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization techniques. The P(OEtOxA)‐ran‐PNBA copolymer exhibits lower critical solution (LCST)‐type soluble‐to‐turbid phase transition in water with tunable cloud point (Tcp) with respect to chain length of P(OEtOxA) segment present. The photocleavage of PNBA segments by UV irradiation transforms amphiphilic P(OEtOxA)‐ran‐PNBA to fully hydrophilic P(OEtOxA)‐ran‐poly(acrylic acid) resulting in the appreciable increase of Tcp of copolymer in aqueous solution. Owing to the amphiphilic nature, the P(OEtOxA)‐ran‐PNBA copolymer molecules self‐assemble into well‐dispersed spherical micelles in water. There is a disruption of the copolymer micelles with UV light irradiation as well as shrinkage of micellar size with increasing temperature above the LCST of copolymer in solution. Finally, the encapsulation of hydrophobic guest molecule (nile red) into P(OEtOxA)‐ran‐PNBA copolymer micelles and thermo‐ and photo‐triggered release of nile red are demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1714–1729  相似文献   

15.
We prepared well‐defined diblock copolymers of thermoresponsive poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) blocks and biodegradable poly(D ,L ‐lactide) blocks by combination of reversible addition‐fragmentation chain transfer radical (RAFT) polymerization and ring‐opening polymerization. α‐Hydroxyl, ω‐dithiobenzoate thermoresponsive polymers were synthesized by RAFT polymerization using hydroxyl RAFT agents. Biodegradable blocks were prepared by ring‐opening polymerization of D ,L ‐lactide initiated by α‐hydroxyl groups of thermoresponsive polymers, which inhibit the thermal decomposition of ω‐dithioester groups. Terminal dithiobenzoate (DTBz) groups of thermoresponsive blocks were easily reduced to thiol groups and reacted with maleimide (Mal). In aqueous media, diblock copolymer products formed surface‐functionalized thermoresponsive micelles. These polymeric micelles had a low critical micelle concentration of 22 μg/L. In thermoresponsive studies of the micelles, hydrophobic DTBz‐surface micelles demonstrated a significant shift in lower critical solution temperature (LCST) to a lower temperature of 30.7 °C than that for Mal‐surface micelles (40.0 °C). In addition, micellar LCST was controlled by changing bulk mixture ratios of respective heterogeneous end‐functional diblock copolymers. Micellar disruption at acidic condition (pH 5.0) was completed within 5 days due to hydrolytic degradation of PLA cores, regardless of showing a slow disruption rate at physiological condition. Furthermore, we successfully improved water‐solubility of hydrophobic drug, paclitaxel by incorporating into the micellar cores. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7127–7137, 2008  相似文献   

16.
Azobenzene switches its structure instantaneously by reversible trans‐to‐cis and cis‐to‐trans photoisomerization with light irradiations. Dynamic change in polymer structure is expected via introducing an azobenzene unit into the main chain. In this study, a set of methyl‐substituted azobenzene–carbazole conjugated copolymers is synthesized by the Suzuki–Miyaura coupling method. Introduction of methyl substituents to the azobenzene unit of the monomer, and polymerization in a high‐boiling solvent improve the molecular weight of the polymer. Decrease of effective conjugation length due to the twisted structure of the main chain allows progress of photoisomerization. The microstructure of the polymer was determined with grazing incidence X‐ray diffraction (GIXD) measurements using synchrotron radiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1756–1764  相似文献   

17.
A hinged, photoresponsive polypeptide (PAzP) was prepared and the effect of the photochromic hinge on the dielectric and photoisomerization behavior of the polymer in solution was probed. Polymerization of N‐carboxyanhydride of γ‐benzyl‐L ‐glutamate was carried out with two different bifunctional photochromic amine initiators: di[(mercaptoethylamine)‐methylpropanamide]azobenzene (DMMPAB) and diaminoazobenzene (DAAB). Careful structural comparison of the polymers revealed that the basicity of the initiator plays a key role in determining the shape and structure of the polymer. Specifically, the use of a novel initiator DMMPAB prepared by the addition of flexible aliphatic amine substituents onto DAAB resulted in a hinged polymer (PAzP1), in which a single photochromic hinge was located within the polymer chain (Mw ~ 36 kDa). In contrast, direct initiation with DAAB resulted in a polymer (PAzP2) in which the photochromic moiety was preferentially near the terminus of the polymer chain (Mw ~ 21 kDa) and the polymer possessed a significant degree of asymmetry. Dielectric spectroscopy revealed that, in spite of a higher molecular weight, PAzP1 had a lower rotational relaxation time (2.72 μs) in solution than that of PAzP2 (4.41 μs). The residual dipole moment for the hinged PAzP1 was also smaller than that observed for PAzP2. The hinged polypeptide PAzP1 prepared from DMMPAB showed uniform photoisomerization between cis and trans states. However, the presence of flexible aliphatic amine substituents on DMMPAB caused the rate of isomerization of PAzP1 to be similar to the initiator DMMPAB. Optical characterization revealed that heterogeneity in the structure of PAzP2 was manifested as nonuniform rates of photoisomerization and thermal relaxation. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2759–2773, 2001  相似文献   

18.
Thermosensitive diethylene glycol‐derived poly(L ‐glutamate) homopolypeptides (i.e., poly‐L ‐EG2‐Glu) with different molecular weights (MW) (Mn,GPC = 5380–32520) were synthesized via the ring‐opening polymerization (ROP) of EG2‐L ‐glutamate N‐carboxyanhydride (EG2‐Glu‐NCA) in N,N‐dimethylformamide solution at 50 °C. Their molecular structure, conformation transition, liquid crystal (LC) phase behavior, lower critical solution temperature (LCST) transition, and morphology evolution were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide angle X‐ray diffraction, polarized optical microscope, transmission electron microscope, and dynamic light scattering. In solid state, the homopolypeptide poly‐L ‐EG2‐Glu presented a conformation transition from α‐helix to β‐sheet with increasing their MW at room temperature, while it mainly assumed an α‐helix of 80–86% in aqueous solution. Poly‐L ‐EG2‐Glu showed a thermotropic LC phase with a transition temperature of about 100 °C in solid state, while it gave a reversible LCST transition of 34–36 °C in aqueous solution. The amphiphilic homopolypeptide poly‐L ‐EG2‐Glu self‐assembled into nanostructures in aqueous solution, and their critical aggregation concentrations decreased with increasing MW. Interestingly, their morphology changed from spherical micelles to worm‐like micelles, then to fiber micelles with increasing MW. This work provides a simple method for the generation of different nanostructures from a thermosensitive biodegradable homopolypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Aliphatic poly(urethane‐amine) (PUA) was synthesized from copolymerization of CO2 and 2‐methylaziridine (MAZ) using Y(CCl3COO)3‐ZnEt2‐glycerine coordination catalyst, the urethane content of PUA was over 80%, and its yield could reach 90%. PUA with molecular weight as high as 31.0 kg/mol was obtained when the copolymerization reaction was carried out in N,N‐dimethylacetamide (DMAc), mainly due to the good solubility of PUA in DMAc. PUA exhibited reversible thermo‐responsive property in deionized water, and the lower critical solution temperature (LCST) was highly sensitive to its urethane content and molecular weight, which was observed in a broad window from 37 to 90 °C. Furthermore, the phase transition behavior could also be controlled by change of pH value. When the pH value of the PUA aqueous solution changed from 9.2 to 13, the LCST value of the solution decreased from 48.4 °C to 30 °C. Therefore, the PUA showed thermo‐ and pH‐ dual responsive performance in water. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号