首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the synthesis of snowman‐like magnetic/nonmagnetic nanocomposite asymmetric particles (SMNAPs) via seeded emulsion polymerization initiated by γ‐ray radiation. In situ formation of magnetite in the presence of the emulsified poly(styrene‐divinylbenzene‐acrylic acid) microspheres affords raspberry‐like magnetic nanocomposite particles, which are used as seeds for further seeded emulsion polymerization induced by γ‐ray radiation. We study the effect of the kind of surfactant, the kind and content of second monomer, and the content of swelling agent on the morphologies of the final nanocomposite particles. It is found that SMNAPs can be fabricated in high yield using 12‐acryloxy‐9‐octadecenoic acid as the surfactant and styrene as the second monomer with the addition of 2‐butanone (a swelling agent). The as‐synthesized SMNAPs may serve as magnetically controllable solid surfactants to stabilize O/W immiscible mixtures, which preferentially orientated at the interface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
We report on a facile route to synthesize snowman‐like asymmetric composite particles via γ‐ray initiated seeded emulsion polymerization after a hydrolytic condensation process on the surface of second monomer swollen poly(styrene‐divinylbenzene‐acrylic acid) seeds. Effects of the amounts and kinds of second monomer and inorganic precursor, different radiation polymerization conditions including dose rates and absorbed doses on the morphology of the obtained particles were investigated. The obtained asymmetric particles can serve as ideal solid surfactants to stabilize the water‐in‐oil emulsions, and soap‐free hierarchical materials were obtained by polymerization of monomers in water or oil phase. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 339–348  相似文献   

3.
Organic–inorganic hybrid particles have many potential applications, but almost all research has been focused on hybrid particles with one kind of inorganic nanoparticle. This article presents a novel and facile preparation approach for raspberry‐like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization. In this method, larger, surface‐modified silica particles are first dispersed into monomer droplets to form a miniemulsion, and then raspberry‐like silica/polystyrene/silica multilayer hybrid particles are directly obtained when miniemulsion polymerization is performed in the presence of smaller, unmodified silica particles with 4‐vinylpyridine as an auxiliary monomer. Influential parameters such as the amount of 4‐vinylpyridine, the surfactant concentration, and the pH value of the system have been investigated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1028–1037, 2007  相似文献   

4.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

5.
Monodisperse colloids have been prepared efficiently by copolymerization of methyl methacrylate and fluorescent first‐ and second‐generation poly(phenylenevinylene) dendrons under surfactant‐free emulsion polymerization conditions. The copolymers were characterized by UV–vis and fluorescence spectroscopy and size exclusion chromatography. Transmission electron microscopy revealed that the copolymers were microspheres with smooth surfaces and narrow dispersity. The bead diameter could be varied by changing the monomer/water ratio. The materials could be crystallized to give polymer opal photonic crystals. The emission was not affected by the periodic structure because of the large spectral distance between the emission and the pseudogap position. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2659–2665, 2010  相似文献   

6.
An easy and novel approach to the synthesis of functionalized nanostructured polymeric particles is reported. The surfactant‐free emulsion polymerization of methyl methacrylate in the presence of the crosslinking reagent 2‐ethyl‐2‐(hydroxy methyl)‐1,3‐propanediol trimethacrylate was used to in situ crosslink colloid micelles to produce stable, crosslinked polymeric particles (diameter size ~ 100–300 nm). A functionalized methacrylate monomer, 2‐methacryloxyethyl‐2′‐bromoisobutyrate, containing a dormant atom transfer radical polymerization (ATRP) living free‐radical initiator, which is termed an inimer (initiator/monomer), was added to the solution during the polymerization to functionalize the surface of the particles with ATRP initiator groups. The surface‐initiated ATRP of different monomers was then carried out to produce core–shell‐type polymeric nanostructures. This versatile technique can be easily employed for the design of a wide variety of polymeric shells surrounding a crosslinked core while keeping good control over the sizes of the nanostructures. The particles were characterized with scanning electron microscopy, transmission electron microscopy, optical microscopy, dynamic light scattering, and Raman spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1575–1584, 2007  相似文献   

7.
A series of SiO2/PMMA composite particles with different morphologies were prepared by conventional emulsion polymerization by the aid of acid–base interaction between the silanol groups of unmodified silica particles and the amino groups of 4‐vinylpyridine. In this approach, no surface treatment for nanosilica particles was required. The morphologies of composite particles, for example, multicore–shell, raspberry‐like, and conventional core–shell, could be controlled by modulating emulsifier content, monomer/silica ratio, silica size, and monomer feed method. The possible particle formation mechanisms were discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3807–3816, 2006  相似文献   

8.
A novel monomer, ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate, containing a photoisomerizable N?N group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate‐block‐ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate ( PMMA ‐ b ‐ PAzoMA ) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod‐like particles took place as a result of the reversible E‐Z photoisomerization of azobenzene segments in PMMA ‐ b ‐ PAzoMA . Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142–1148, 2010  相似文献   

9.
A novel method for the synthesis of polyacrylonitrile (PAN)‐coated multiwall carbon nanotubes (MWCNTs) via a simple soap‐free emulsion polymerization is presented for the first time. The polymerization was initiated with conventional anionic ammonium persulfate (APS) at 65 °C. The modification of PAN on MWCNT surfaces was confirmed by Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectra (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. It is found that all the surfaces of the MWCNTs were coated by PAN chains, and the PAN coating thickness could be controlled by simply adjusting the polymerization time. The obtained PAN‐coated MWCNTs could be well dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2057–2062, 2010  相似文献   

10.
Dendron‐like poly(γ‐benzyl‐L ‐glutamate)/linear poly(ε‐caprolactone)/dendron‐like poly(γ‐benzyl‐L ‐glutamate) triblock copolymers having 2m + 1 PBLG branches (denoted as PBLG‐Dm‐PCL‐Dm‐PBLG, m = 0, 1, 2, and 3) were for the first time synthesized by utilizing ring‐opening polymerization (ROP) and click chemistry. The bifunctional azide‐terminated PCL (N3‐PCL‐N3) was click conjugated with propargyl focal point PAMAM‐typed dendrons Dm to generate Dm‐PCL‐Dm, which was then used as macroinitiator for the ROP of BLG‐NCA monomer to produce the targeted PBLG‐Dm‐PCL‐Dm‐PBLG triblock copolymers. Their molecular structures and physical properties were characterized in detail by FTIR, NMR, gel permeation chromatography, differential scanning calorimetry, and wide angle X‐ray diffraction (WAXD). The crystallinity of the central PCL segment within these copolymers is increasingly suppressed by the flanking PBLG wedges, whereas the PBLG segments gradually changed from a β‐sheet conformation to an α‐helix conformation with the increasing PBLG branches. These triblock copolymers formed thermoreversible organogels in toluene, and the dendritic topology of PBLG wedges controlled their critical gelation concentrations. The self‐assembled structure of organogels was further characterized by means of transmission electron microscopy, WAXD, and small‐angle X‐ray scattering. The fibers with flat ribbon morphology were clearly shown, and the gelation occurred through a self‐assembled nanoribbon mechanism. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 709–718, 2010  相似文献   

11.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

12.
Poly(siloxane‐fluoroacrylate)‐grafted silica hybrid nanoparticles were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP). The silica nanoparticles with α‐bromo‐ester initiator group for copper‐mediated ATRP were prepared by the self‐assembled monolayers of (3‐aminopropyl)triethoxysilane and 2‐bromoisobutyrate bromide. Well‐defined diblock copolymer brushes consisting of poly(methacryloxypropyltrimethoxysilane) and poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) blocks were obtained by using initial homopolymer brushes as the macroinitiators for the SI‐ATRP of the second monomer. Chemical compositions and structures of the nanoparticles were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Surface properties and morphology of the nanoparticles were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurement. It is revealed that the surfaces of the nanocomposites are rough at the microscale and nanoscale. The formation reason of the superhydrophobic surfaces was also discussed in this work. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
A novel achiral monomer end‐capped with a phenyl‐[1,3,4]oxadiazolyl group and threaded through β‐cyclodextrin was synthesized to investigate the host‐guest interactions in the inclusion complex. 1H NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized achiral monomer, leading to the formation of a fibrous construction of self‐assembled inclusion complexes. The formation of a self‐assembled inclusion complex was identified using SEM and TEM. The highly ordered alignment of self‐assembled supramolecules was confirmed using polarized optical microscopy. We demonstrate an easy process for the fabrication of nano‐structured self‐assembled inclusion complexes in pyridine/ethanol (1 mL/10 mL) as well as the enhancement of photo‐induced fluorescence via monomers end‐capped with a phenyl‐[1,3,4]oxadiazolyl moiety threaded with β‐cyclodextrins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3368–3374, 2010  相似文献   

14.
Three series of core‐shell hydroxyl‐functionalized latexes were synthesized and then crosslinked with a cycloaliphatic diepoxide. The same amount of hydroxyl functional monomer was added during the core stage, shell stage, or partitioned equally between the core and the shell. The morphology of the latexes was examined with transmission electron microscopy and contact‐angle measurement. The stress‐strain behavior, viscoelastic properties, and water adsorption were evaluated for the latex films as a function of hydroxyl location. The location of hydroxyl groups within latex particles appeared to be dependent on the introduction mode of hydroxyl functional monomers. The introduction of hydroxyl groups during the shell polymerization resulted in a higher crosslinking density but a lower Tukon hardness and tensile properties. Not surprisingly, distribution of hydroxyl groups in both core and shell polymerization provided the lowest water adsorption and impact resistance as well as the highest tensile elongation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4256–4265, 2002  相似文献   

15.
Cationic latex particles with surface amino groups were prepared by a multistep batch emulsion polymerization. In the first one or two steps, monodisperse cationic latex particles to be used as the seed were synthesized, and in the third step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)] were used to synthesize the final functionalized latex particles. 2,2′‐Azobisisobutyramidine dihydrochloride was used as the initiator, and different concentrations of two quaternary ammonium emulsifiers with hydrophobic chains of different lengths were examined. To characterize the final latexes yields were obtained gravimetrically, and particle size distributions and average particle diameters were determined by transmission electron microscopy and photon correlation spectroscopy. The amount of amino groups was determined by fluorimetry. The effect of the amino‐functional monomer used on the final latexes and the colloidal behavior of the system were studied. The influence of the different conditions utilized to synthesize the latexes on the colloidal stability of the particles was evaluated in terms of the Fuchs stability ratio and electrophoretic mobility. High yields of the amino‐functional monomers were obtained. Surface amino, amidine, and quaternary ammonium groups provided the cationic character. The colloidal stability behavior of the products obtained was compatible with their cationic character. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2929–2936, 2001  相似文献   

16.
A new vinyl acyl azide monomer, 4‐(azidocarbonyl) phenyl methacrylate, has been synthesized and characterized by NMR and FTIR spectroscopy. The thermal stability of the new monomer has been investigated with FTIR and thermal gravimetry/differential thermal analysis (TG/DTA), and the monomer has been demonstrated to be stable below 50 °C in the solid state. The copolymerizations of the new monomer with methyl acrylate have been carried out at room temperature under 60Co γ‐ray irradiation in the presence of benzyl 1H‐imidazole‐1‐carbodithioate. The results show that the polymerizations bear all the characteristics of controlled/living free‐radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow (<1.20), and a linear relationship existing between ln([M]0/[M]) and the polymerization time. The data from 1H NMR and FTIR confirm that no change in the acyl azide groups has occurred in the polymerization process and that acyl azide copolymers have been obtained. The thermal stability of the polymers has also been investigated with TG/DTA and FTIR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2609–2616, 2007  相似文献   

17.
Summary: Raspberry‐like aggregates containing secondary nanospheres were studied. The formation of raspberry‐like aggregates was due to complexation between core‐shell microspheres and core‐corona micelles. The core‐shell microspheres were synthesized with soap‐free polymerization of styrene and methyl acrylic acid, which included carboxyl groups in the periphery. The micelles were self‐assembled by polystyrene‐block‐poly(4‐vinylpyridine), which contained pyridine groups in the corona. The driven force to form raspberry‐like aggregates was due to the affinity between the carboxyl and pyridine groups. The morphology of the raspberry‐like aggregates could be tuned by changing the ratio of the microspheres to micelles. IR measurements suggested that the raspberry‐like aggregates were like zwitterions.

TEM image of the raspberry‐like aggregates formed at a molar ratio of MAA to 4VP at 1:4.  相似文献   


18.
Terminal aryl alkynes RC6H4C?CH with substituents of different electronic properties and ring position (R = H, 4‐CF3, 4‐OMe, 2‐CF3, 2‐OMe, 2‐Me) were exposed to γ‐radiation (50–400 kGy) in organic solvents (hexane, 1,4‐dioxane, ethylacetate, methanol, tetrahydrofuran), at room temperature. The effects arising from substituent, solvent, dilution, and radiation dose allowed to define the conditions suitable for polymerization, which was favored in methanol at increasing dilution of the alkyne. Ortho‐substitution represented the key structural element in the substrate, and the derived polyarylacetylenes were characterized in detail, including gel permeation chromatography, thermal analysis, infrared, NMR, UV–vis, fluorescence, and scanning electron microscope spectroscopy. The results are consistent with the formation of irregular polymers mainly composed of trans‐transoid chains. Controlled aggregation of the polymers by means of an osmosis‐based procedure in solvent/non‐solvent mixtures allowed the formation of nanostructured materials, in particular of hollow nanospheres from THF/water. The methodology sets the basis for the development of γ‐rays‐induced polymerization of alkynes, in a transition metal catalyst‐free environment. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

20.
The AB‐monomer, 3,4‐diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous hydrochloric acid solution and used to synthesize high‐molecular‐weight poly(2,5‐benzimidazole) (ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in situ polymerization of the AB‐monomer in the presence of single‐walled carbon nanotube (SWCNT) or multiwalled carbon nanotube (MWCNT) in a mildly acidic polyphosphoric acid. The ABPBI/SWCNT and ABPBI/MWCNT composites displayed good solubility in methanesulfonic acid and thus, uniform films could be cast. The morphology of these composite films was studied by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties of the composite films were significantly improved when compared with ABPBI, and their toughness (~200 MPa) was close to the nature's toughest spider silk (~215 MPa). The electrical conductivities of ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10 × 10?5 and 2.53 × 10?1 S/cm, respectively, whereas that of ABPBI film was 4.81 × 10?6 S/cm. These values are ~19 and 52,700 times enhanced by the presence of SWCNT and MWCNT, respectively. Finally, without acid impregnation, the ABPBI film was nonconducting while the SWCNT‐ and MWCNT‐based composites were proton conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1067–1078, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号