首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
New ternary rare earth metal boride carbides with compositions close to RE10B9C10 (RE = Gd, Tb) were prepared from the elements by melting around 1800 K followed by annealing in silica tubes at 1270 K for one month. The crystal structure of the terbium compound was solved by single‐crystal X‐ray diffraction. It crystallizes in a new structure type in the monoclinic space group P21/c, a = 7.937(1), b = 23.786(2), c = 11.172(1) Å, β = 133.74(1)°, Z = 4, R1 = 0.045 (wR2 = 0.11) for 5713 reflections with Io > 2σ(Io). In the structure BC2 units and single carbon atoms are attached to a zigzag boron chain forming the unprecedented B18C18 branching unit with a B–B distance of 2.42(2) Å between these units. In addition isolated carbon atoms occupy the centres of elongated octahedra formed by rare earth metal atoms. Disorder in the terbium position together with anomalous displacement ellipsoids for carbon atoms except of those in the BC2 fragments can be rationalized in terms of a slight deviation in stoichiometry, Tb10B9+xC10–x (x ≈? 0.2). The terbium compound is ferromagnetic below TC ≈? 45 K. Due to the presence of moderately narrow domain walls the magneto‐crystalline energy is small.  相似文献   

2.
The ternary rare‐earth germanium antimonides RE12Ge7?xSb21 (RE=La–Pr; x=0.4–0.5) are synthesized by direct reactions of the elements. Single‐crystal X‐ray diffraction studies indicate that they adopt a new structure type (space group Immm, Z=2, a=4.3165(4)–4.2578(2) Å, b=15.2050(12)–14.9777(7) Å, c=34.443(3)–33.9376(16) Å in the progression from RE=La to Pr), integrating complex features found in RE6Ge5?xSb11+x and RE12Ga4Sb23. A three‐dimensional polyanionic framework, consisting of Ge pairs and Sb ribbons, outlines large channels occupied by columns of face‐sharing RE6 trigonal prisms. These trigonal prisms are centered by additional Ge and Sb atoms to form GeSb3 trigonal‐planar units. A bonding analysis attempted through a Zintl–Klemm approach suggests that full electron transfer from the RE atoms to the anionic substructure cannot be assumed. This is confirmed by band‐structure calculations, which also reveal the importance of Ge? Sb and Sb? Sb bonding. Magnetic measurements on Ce12Ge6.5Sb21 indicate antiferromagnetic coupling but no long‐range ordering down to 2 K.  相似文献   

3.
The focus of this paper is on the synthesis and crystal structures of three Zn‐rich compounds with the general formula RE7Zn21+xSi2−x, where RE = Ce [x = 0.95 (1); heptacerium docosazinc silicon], Pr [x = 0.09 (1); heptapraseodymium henicosazinc disilicon], and Nd [x = 0.53 (1); heptaneodymium docosazinc silicon]. The compounds were obtained by high‐temperature reactions, using the respective elements as starting materials. The structures were determined by single‐crystal X‐ray diffraction. The title compounds crystalize in the orthorhombic space group Pbam (No. 55, Pearson symbol oP60) and are isostructural with about a dozen RE7Zn21+xTt2−x (RE = La–Nd; Tt = Ge, Sn, and Pb) compounds previously reported by our group. The results from the present refinements confirm the previously published data on RE7Zn21+xSi2−x (RE = La and Ce; x≃ 1.45) [Malik et al. (2013). Intermetallics, 36 , 118–126]. Additionally, magnetic susceptibility measurements on the corresponding bulk samples show Curie–Weiss paramagnetic behavior from 5 to 300 K, consistent with RE3+ ground states and local‐moment magnetism due to the core 4f electrons.  相似文献   

4.
Well‐shaped yellow to red transparent single crystals of the phosphide oxides REZnPO (RE = Y, La–Nd, Sm, Gd, Dy, Ho) were synthesized from the elements and ZnO in NaCl/KCl fluxes in sealed silica ampoules. Four structures (NdZnPO type, R3m) were refined from single crystal X‐ray diffractometer data: a = 388.5(2), c = 3032(1) pm, wR2 = 0.0380, 360 F2 values for YZnPO, a = 394.6(2), c = 3071(1) pm, wR2 = 0.0587, 226 F2 values for SmZnPO, a = 392.2(2), c = 3056(1) pm, wR2 = 0.0262, 462 F2 values for GdZnPO, and a = 389.33(6), c = 3030.5(4) pm, wR2 = 0.0453, 217 F2 values for DyZnPO each with 14 variables per refinement. The structures are composed of alternate stacks of (RE3+O2−) and (Zn2+P3−) layers with covalent RE–O and ZñP bonding within and weak ionic bonding between the layers. The zinc and oxygen atoms have slightly distorted tetrahedral coordination by atoms of phosphorus and the rare earth element, respectively. According to the electron precise formulation RE3+Zn2+P3−O2−, these pnictide oxides are transparent in visible light. Susceptibility measurements on β‐CeZnPO, β‐PrZnPO, and GdZnPO reveal Curie‐Weiss paramagnetism with experimental magnetic moments of 2.31, 3.60, and 7.72 μB/RE atoms, respectively. β‐CeZnPO and β‐PrZnPO show antiferromagnetic order with Néel temperatures of 7.4 (Ce) and 2.2 (Pr) K. GdZnPO shows no magnetic ordering down to 2 K. Single crystal absorption spectra measured for REZnPO (RE = Y, La, Pr, Nd, Sm, Dy) in the NIR‐Vis region reveal unexpected variations for the optical band gap of these phosphide oxides. For RE = Pr, Nd, Sm, Dy, Ho f‐f electronic transitions with nicely resolved ligand‐field splittings are observed in the range 6000–20000 cm−1. DFT band structure calculations show similarity between the valence bands of tetragonal and rhombohedral REZnPO as they possess mainly P‐3p character. In both cases, the conduction bands have mainly Zn‐4s character, but a significant contribution of RE‐5d occurs in rhombohedral REZnPO, which is responsible for a smaller optical band gap for the latter compounds. Variations of the energy gaps of tetragonal REZnPO can be explained by hybridization of Zn‐4s + RE‐5d + RE‐4f orbitals for the conduction band. DFT volume optimizations of α‐ and β‐PrZnPO show β‐PrZnPO to be more stable by 10.7 kJ mol−1.  相似文献   

5.
18‐electron compounds REML (RE = rare earth metal; M = Cu, Ag, Au; L = Ge, Sn) can adopt either the stuffed graphite‐like (P63mc) or the stuffed diamond‐like ( ) structure. To understand why one structure is favored over the other, we carried out density functional theory electronic structure calculations for a number of REAuSn compounds. The stuffed graphite‐like and stuffed diamond‐like structures of an 18‐electron compound REAuSn are quite similar in their electronic structures with the Au atoms best described as existing as anions. The diamond‐like REML becomes possible only when the RE3+ ion is small and the M‐L bond is long.  相似文献   

6.
The new rare earth metal rich intermetallic compounds RE4CoMg (RE = Y, La, Pr, Nd, Sm, Gd–Tm) were prepared via melting of the elements in sealed tantalum tubes in a water‐cooled sample chamber of a high‐frequency furnace. The compounds were investigated by X‐ray diffraction of powders and single crystals: Gd4RhIn type, , a = 1428.38(9) pm, wR2 = 0.0638, 680 F2 values, 20 variables for La4CoMg, a = 1399.5(2) pm, wR2 = 0.0584, 589 F2 values, 20 variables for Pr4CoMg, a = 1390.2(3) pm, wR2 = 0.0513, 634 F2 values, 20 variables for Nd3.90CoMg1.10, a = 1381.0(3) pm, wR2 = 0.0730, 618 F2 values, 22 variables for Sm3.92Co0.93Mg1.08, a = 1373.1(4) pm, wR2 = 0.0586, 611 F2 values, 20 variables for Gd3.92CoMg1.08, a = 1362.1(3) pm, wR2 = 0.0576, 590 F2 values, 20 variables for Tb3.77CoMg1.23, a = 1344.8(2) pm, wR2 = 0.0683, 511 F2 values, 20 variables for Dy3.27CoMg1.73, and a = 1343.3(2) pm, wR2 = 0.0560, 542 F2 values, 20 variables for Er3.72CoMg1.28. The cobalt atoms have trigonal prismatic rare earth coordination. Condensation of the CoRE6 prisms leads to a three‐dimensional network which leaves larger voids that are filled by regular Mg4 tetrahedra at a Mg–Mg distance of 316 pm in La4CoMg. The magnesium atoms have twelve nearest neighbors (3 Mg + 9 RE) in icosahedral coordination. In the structures with Nd, Sm, Gd, Tb, Dy, and Er, the RE1 positions which are not involved in the trigonal prismatic network reveal some RE1/Mg mixing and the Sm3.92Co0.93Mg1.08 structure shows small cobalt defects. Considering La4CoMg as representative of all studied systems an analysis of the chemical bonding within density functional theory closely reproduces the crystal chemistry scheme and shows the role played by the valence states of the different constituents in the electronic band structure. Strong bonding interactions were observed between the lanthanum and cobalt atoms within the trigonal prismatic network.  相似文献   

7.
The rare‐earth metal germanides RE2Ge9 (RE = Nd, Sm) have been prepared by thermal decomposition of the metastable high‐pressure phases REGe5 at ambient pressure. The compounds adopt an orthorhombic unit cell with a = 396.34(4) pm; b = 954.05(8) pm and c = 1238.4(1) pm for Nd2Ge9 and a = 395.46(7) pm; b = 946.4(2) pm and c = 1232.1(3) pm for Sm2Ge9. Crystal structure refinements reveal space group Pmmn (No. 59) for Nd2Ge9. The atomic pattern resembles an ordered defect variety of the pentagermanide motif REGe5 (RE = La; Nd, Sm, Gd, Tb) comprising corrugated germanium layers. These condense into a three‐dimensional network interconnected by eight‐coordinated germanium atoms. The resulting framework channels along [100] enclose the neodymium atoms. With respect to the atomic arrangement of the pentagermanides, half of the interlayer germanium atoms are eliminated in an ordered way so that occupied and empty germanium columns alternate along [001]. The rare‐earth metal atoms of both types of compounds, REGe5 and RE2Ge9, exhibit the electronic states 4f 3 and 4f 5 (oxidation state +3) for neodymium and samarium, respectively, evidencing that the modification of the germanium network leaves the electron configuration of the metal atoms unaffected.  相似文献   

8.
High‐pressure modifications of the rare earth oxide fluorides REOF (RE = Pr, Nd, Sm – Gd) were successfully synthesized under conditions of 11 GPa and 1200 °C applying the multianvil high‐pressure/high‐temperature technique. Single crystals of HP‐REOF (RE = Nd, Sm, Eu) were obtained making it possible to analyze the products by means of single‐crystal X‐ray diffraction. The compounds HP‐REOF (RE = Nd, Sm, Eu) crystallize in the orthorhombic α‐PbCl2‐type structure (space group Pnma, No. 62, Z = 4) with the parameters a = 632.45(3), b = 381.87(2), c = 699.21(3) pm, V = 0.16887(2) nm3, R1 = 0.0156, and wR2 = 0.0382 for HP‐NdOF, a = 624.38(3), b = 376.87(2), c = 689.53(4) pm, V = 0.16225(2) nm3, R1 = 0.0141, and wR2 = 0.0323 for HP‐SmOF, and a = 620.02(4), b = 374.24(3), c = 686.82(5) pm, V = 0.15937(2) nm3, R1 = 0.0177, and wR2 = 0.0288 for HP‐EuOF. Calculations of the bond valence sums clearly showed that the oxygen atoms occupy the tetrahedrally coordinated position, whereas the fluorine atoms are fivefold coordinated in form of distorted square‐pyramids. The crystal structures and properties of HP‐REOF (RE = Nd, Sm, Eu) are discussed and compared to the isostructural phases and the normal‐pressure modifications of REOF (RE = Nd, Sm, Eu). Furthermore, results of investigations by EDX and Raman measurements including quantum mechanical calculations are presented.  相似文献   

9.
The crystal structures of 3[RE2(ADC)3(H2O)6] · 2H2O (RE = Pr, Nd, Sm, Eu, Tb, Dy) were solved and refined from X‐ray single crystal data. They crystallize in a structure type already known for RE = La, Ce and Gd (P1 , no. 2, Z = 2), which is characterized by REO9 polyhedra forming dimeric units being the nodes of a 3D framework structure linked by ADC2– anions (O2C–C≡C–CO2 = acetylenedicarboxylate). From synchrotron powder diffraction data it was shown that isostructural coordination networks are formed for RE = Ho, Er, Y, whereas for RE = Tm, Yb, Lu a new structure type crystallizing in a highly complex crystal structure with a large orthorhombic unit cell is found. All compounds are obtained by slow evaporation of an aqueous solution containing RE(OAc)3 · xH2O and acetylenedicarboxylic acid (H2ADC). The coordination networks of composition 3[RE2(ADC)3(H2O)6] · 2H2O were thoroughly investigated by thermal analysis and for RE = Eu, Tb, a strong red and green photoluminescence was observed and investigated by means of UV/Vis spectroscopy.  相似文献   

10.
The isotypic indides RE4Pt10In21 (RE = La, Ce, Pr, Nd) were prepared by melting mixtures of the elements in an arc‐furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The four samples were studied by powder and single crystal X‐ray diffraction: Ho4Ni10Ga21 type, C2/m, a = 2305.8(2), b = 451.27(4), c = 1944.9(2) pm, β = 133.18(7)°, wR2 = 0.045, 2817 F2 values, 107 variables for La4Pt10In21, a = 2301.0(2), b = 448.76(4), c = 1941.6(2) pm, β = 133.050(8)°, wR2 = 0.056, 3099 F2 values, 107 variables for Ce4Pt10In21, a = 2297.4(2), b = 447.4(4), c = 1939.7(2) pm, β = 132.95(1)°, wR2 = 0.059, 3107 F2 values, 107 variables for Pr4Pt10In21, and a = 2294.7(4), b = 446.1(1), c = 1938.7(3) pm, β = 132.883(9)°, wR2 = 0.067, 2775 F2 values, 107 variables for Nd4Pt10In21. The 8j In2 positions of all structures have been refined with a split model. The In1 sites of the lanthanum and the cerium compound show small defects, leading to the refined composition La4Pt10In20.966(6) and Ce4Pt10In20.909(6) for the investigated crystals. The same position shows Pt/In mixing in the praseodymium and neodymium compound leading to the refined compositions Pr4Pt10.084(9)In20.916(9) and Nd4Pt10.050(9)In20.950(9). All platinum atoms have a tricapped trigonal prismatic coordination by rare‐earth metal and indium atoms. The shortest interatomic distances occur for Pt–In followed by In–In. Together, the platinum and indium atoms build up three‐dimensional [Pt10In21] networks in which the rare earth atoms fill distorted pentagonal tubes. The crystal chemistry of RE4Pt10In21 is discussed and compared with the RE4Pd10In21 indides and isotypic gallides.  相似文献   

11.
The series of RE5Li2Sn7 (RE = Ce–Sm) compounds were synthesized by high‐temperature reactions and structurally characterized by single‐crystal X‐ray diffraction. The compounds are pentacerium dilithium heptastannide, Ce5Li1.97Sn7.03, pentapreseodymium dilithium heptastannide, Pr5Li1.98Sn7.02, pentaneodymium dilithium heptastannide, Nd5Li1.99Sn7.01, and pentasamarium dilithium heptastannide, Sm5Li2Sn7. All five compounds crystallize in the chiral orthorhombic space group P212121 (No. 19), which is relatively uncommon among intermetallic phases. The structure belongs to the Ce5Li2Sn7 structure type (Pearson symbol oP56), with 14 unique atoms in the asymmetric unit. Minor compositional variations exist, due to the mixed occupancy of Li and Sn atoms at one of the Li sites. The small occupational disorder is most evident for RE5Li2−xSn7+x (RE = Ce, Pr; x≃ 0.03), while the structure of Nd5Li2Sn7 and Sm5Li2Sn7 show no apparent disorder.  相似文献   

12.
Abstract. The ternary Zintl phase Ca3Ag1+xGe3–x (x = 1/3) was synthesized by the high‐temperature solid‐state technique and its crystal structure was refined from single‐crystal diffraction data. The compound Ca3Ag1.32Ge2.68(1) adopts the Sc3NiSi3 type structure, crystal data: space group C2/m, a = 10.813(1) Å, b = 4.5346(4) Å, c = 14.3391(7) Å, β = 110.05(1)° and V = 660.48(10) Å3 for Z = 4. Its structure can be interpreted as an intergrowth of fragments cut from the CaGe (CrB‐type) and the CaAg1+xGe1–x (TiNiSi‐type) structures, and it therefore represents an alkaline‐earth member of the structure series with the general formula R2+nT2X2+n with n = 4. Unlike the rare‐earth homologues that are fully ordered phases, one seventh of the atomic sites in the unit cell of the title compound are mixed occupied (roughly 2/3Ge and 1/3Ag), and this can be explained by the Zintl concept. The alloying of this phase using aluminum metal yielded the isotypic solid solution Ca3(Ag/Al)1+xGe3–x, in which the aluminum for silver substitution is strictly localized in the TiNiSi substructure, revealing the very different functionality of the two building blocks.  相似文献   

13.
The syntheses and single‐crystal and electronic structures of three new ternary lithium rare earth germanides, RE5−xLixGe4 (RE = Nd, Sm and Gd; x≃ 1), namely tetrasamarium lithium tetragermanide (Sm3.97Li1.03Ge4), tetraneodymium lithium tetragermanide (Nd3.97Li1.03Ge4) and tetragadolinium lithium tetragermanide (Gd3.96Li1.03Ge4), are reported. All three compounds crystallize in the orthorhombic space group Pnma and adopt the Gd5Si4 structure type (Pearson code oP36). There are six atoms in the asymmetric unit: Li1 in Wyckoff site 4c, RE1 in 8d, RE2 in 8d, Ge1 in 8d, Ge2 in 4c and Ge3 in 4c. One of the RE sites, i.e. RE2, is statistically occupied by RE and Li atoms, accounting for the small deviation from ideal RE4LiGe4 stoichiometry.  相似文献   

14.
The rare earth‐rich compounds RE23Rh7Mg4 (RE = La, Ce, Pr, Nd, Sm, Gd) were prepared by induction‐melting the elements in sealed tantalum tubes. The new compounds were characterized by X‐ray powder diffraction. They crystallize with the hexagonal Pr23Ir7Mg4 type structure, space group P63mc. The structures of La23Rh7Mg4 (a = 1019.1(1), c = 2303.7(4) pm, wR2 = 0.0827, 1979 F2 values, 69 variables), Nd23Rh7Mg4 (a = 995.4(2), c = 2242.3(5) pm, wR2 = 0.0592, 2555 F2 values, 74 variables) and Gd23Rh6.86(5)Mg4 (a = 980.5(2), c = 2205.9(5) pm, wR2 = 0.0390, 2083 F2 values, 71 variables) were refined from single crystal X‐ray diffractometer data. The three crystallographically different rhodium atoms have trigonal prismatic rare earth coordination with short RE–Rh distances (283–300 pm in Nd23Rh7Mg4). The prisms are condensed via common edges, leading to a rigid three‐dimensional network in which isolated Mg4 tetrahedra (312–317 pm Mg–Mg in Nd23Rh7Mg4) are embedded. Temperature dependent magnetic susceptibility data of Ce23Rh7Mg4 indicate Curie‐Weiss behavior with an experimental magnetic moment of 2.52(1) μB/Ce atom, indicative for stable trivalent cerium. Antiferromagnetic ordering is evident at 2.9 K.  相似文献   

15.
Self‐assembly reaction between hydrated rare‐earth (RE) nitrates RE(NO3)3 · 6H2O with K3Fe(CN)6 in H2O/DMF solution by employing the tridentate ligand 2, 2′:6′,2′′‐terpyridine (terpy) as a capping ligand has yielded three cyanide‐bridged compounds [RE(terpy)(DMF)(H2O)2][Fe(CN)6] · 6H2O [RE = Y ( 1 ), Tb ( 2 ), Dy ( 3 )]. FT‐IR spectra confirmed the presence of terpy ligands and cyanide groups in compounds 1 – 3 . Single‐crystal X‐ray structural analysis indicated that these compounds are isomorphous and adopt neutral [RE2Fe2] molecular squares, which are further linked through hydrogen bonding interactions to generate a three‐dimensional supramolecular network. Magnetic susceptibility measurements revealed that significant single ion magnetic anisotropy dominates the properties of these compounds.  相似文献   

16.
Zintl phases are renowned for their diverse crystal structures with rich structural chemistry and have recently exhibited some remarkable heat‐ and charge‐transport properties. The ternary bismuthides RELi3Bi2 (RE = La–Nd, Sm, Gd, and Tb) (namely, lanthanum trilithium dibismuthide, LaLi3Bi2, cerium trilithium dibismuthide, CeLi3Bi2, praseodymium trilithium dibismuthide, PrLi3Bi2, neodymium trilithium dibismuthide, NdLi3Bi2, samarium trilithium dibismuthide, SmLi3Bi2, gadolinium trilithium dibismuthide, GdLi3Bi2, and terbium trilithium dibismuthide, TbLi3Bi2) were synthesized by high‐temperature reactions of the elements in sealed Nb ampoules. Single‐crystal X‐ray diffraction analysis shows that all seven compounds are isostructural and crystallize in the LaLi3Sb2 type structure in the trigonal space group Pm1 (Pearson symbol hP6). The unit‐cell volumes decrease monotonically on moving from the La to the Tb compound, owing to the lanthanide contraction. The structure features a rare‐earth metal atom and one Li atom in a nearly perfect octahedral coordination by six Bi atoms. The second crystallographically unique Li atom is surrounded by four Bi atoms in a slightly distorted tetrahedral geometry. The atomic arrangements are best described as layered structures consisting of two‐dimensional layers of fused LiBi4 tetrahedra and LiBi6 octahedra, separated by rare‐earth metal cations. As such, these compounds are expected to be valance‐precise semiconductors, whose formulae can be represented as (RE3+)(Li1+)3(Bi3−)2.  相似文献   

17.
Four new ternary carbometalates of the general formula RE2[Mo2C3] with RE = Ce, Sm, Tb and Dy have been prepared by a high temperature synthesis route. The Ce, Tb and Dy compounds crystallize isotypic to Er2[Mo2C3], Sm2[Mo2C3], however, is an isotype of Ho2[Cr2C3]. The crystal structures comprise polyanionic layers [(Mo2C3)6?] with the rare‐earth metal ions in between. The layers are constructed by edge and vertex connected MoC4 tetrahedra, which display strong covalent Mo–C bonds. The compounds show metallic behaviour close to the classical limit of 100 μΩ cm for metallic conductors. The magnetic properties are quite different, however they are consistent with the presence of trivalent RE3+ ions with the exception of Ce2[Mo2C3], which contains nonmagnetic Ce species. Electronic structure calculations reveal that the additional electron mainly populates the Ce partial structure. The title compounds extend the series of known carbomolybdates RE2[Mo2C3]. The late lanthanides Gd, Tb, Dy, Ho, Er, Tm, and Lu with comparatively small RE3+ ions and Ce as Ce4+ adopt the Er2[Mo2C3] structure type, whereas the early lanthanides Sm and Pr with larger RE3+ ions crystallize in the structure types of Ho2[Cr2C3] and Pr2[Mo2C3], respectively.  相似文献   

18.
Two new series of tetracyanamidogermanates were prepared by solid‐state reaction of appropriate amounts of REF3 (RE = rare earth), A2[GeF6] (A = alkaline), and Li2(CN2) in evacuated silica tubes. Powder X‐ray diffraction patterns of crystalline samples of KRE[Ge(CN2)4] and CsRE[Ge(CN2)4] were indexed isotypically to KRE[Si(CN2)4] and RbRE[Ge(CN2)4], respectively. Luminescence properties of Ce3+, Eu3+, and Tb3+ doped compounds and non‐linear optical properties (NLO) of KRE[Ge(CN2)4] are reported.  相似文献   

19.
The new phosphides La5Zn2?xP6 and Ce5Zn2?xP6 were synthesized from the rare earth metals, LaZn and CeZn precursor compounds, Zn, and red phosphorous in NaCl/KCl salt fluxes. They crystallize with a new rhombohedral structure type: , Z = 3, a = 422.11(6), c = 6220(1) pm, wR2 = 0.0369, 356 F2 values, 23 variables for La5Zn1.69P6 and a = 417.05(6), c = 6162(1), wR2 = 0.0343, 286 F2 values, 23 variables for Ce5Zn1.75P6. The P3? phosphide anions show an h2c4 stacking sequence in which the RE3+ and Zn2+ cations fill 5/6 and 1/6 of the octahedral and tetrahedral voids in an ordered manner, respectively, leading to a layer of condensed ZnP4 tetrahedra and quintupled layers of condensed REP6 octahedra. The structures of La5Zn2?xP6 and Ce5Zn2?xP6 belong to a larger family of phosphides which are intergrowth variants of CaAl2Si2 and NaCl related slabs according to REZn2P2·n(REP) with n = 4 for the present phosphides.  相似文献   

20.
Ca1–xB2C4 (x ~ 0.08) and Ca1–xB2C6 (x ~ 0.04) are two compounds containing heterographene‐B,C nets which were prepared by solid state synthesis and structurally characterized by X‐ray powder diffraction data. Both compounds crystallize in the space group P6/ mmm (No. 191). The lattice constants are a = 4.55971(5) Å and c = 4.4020(1) Å for CaB2C4 and a = 2.58390(5) Å, c = 4.43597(8) Å for CaB2C6. The calcium atoms are intercalated between the heterographene (B,C) nets. The calcium atom distribution in Ca1–xB2C6 is disordered, leading to diffuse scattering. A model for this disorder was developed that matches well the observed diffuse scattering observed in the electron diffraction pattern. For Ca1–xB2C6 and its decomposition products magnetic and electric properties are being reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号