首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 967 毫秒
1.
The pH‐responsive amphiphilic A2B2 miktoarm star block copolymer, poly(acrylic acid)2‐poly(vinyl acetate)2 [(PAA)2(PVAc)2], with controlled molecular weight and well‐defined structure was successfully synthesized via combination of single‐electron transfer‐mediated living radical polymerization (SET‐LRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization methods. First, the precursor two‐armed poly(t‐butyl acrylate) (PtBA)2 functionalized with two xanthate groups was prepared by SET‐LRP of t‐butyl acrylate in acetone at 25 °C using the novel tetrafunctional bromoxanthate (Xanthate2‐Br2) as an Iniferter (initiator‐transfer agent‐terminator) agent. The polymerization behavior showed typical LRP natures by the first‐order polymerization kinetics and the linear dependence of molecular weight of the polymer on the monomer conversion. Second, the A2B2 miktoarm star block copolymer (PtBA)2(PVAc)2 was prepared by RAFT polymerization of VAc using (PtBA‐N3)2(Xanthate)2 obtained as the macro‐RAFT agent. Finally, the pH‐sensitive A2B2 amphiphilic miktoarm star block copolymer poly(acrylic acid)2‐poly(vinyl acetate)2 ((PAA)2(PVAc)2) was obtained by selectively cleavage of t‐butyl esters of (PtBA)2(PVAc)2. All the miktoarm star block copolymers were characterized by GPC, 1H‐NMR, and FT‐IR spectra. The self‐assembly behaviors of the amphiphilic A2B2 miktoarm block copolymers (PAA)2(PVAc)2 were also investigated by transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

2.
A novel amphiphilic A3B miktoarm star copolymer poly(N‐isopropylacrylamide)3‐poly(N‐vinylcarbazole) ((PNIPAAM)3(PVK)) was successfully synthesized by a combination of single‐electron transfer living radical polymerization (SET‐LRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization. First, the well‐defined three‐armed poly(N‐isopropylacrylamide) (PNIPAAM)3 was prepared via SET‐LRP of N‐isopropylacrylamide in acetone at 25 °C using a tetrafunctional bromoxanthate iniferter (Xanthate‐Br3) as the initiator and Cu(0)/PMDETA as a catalyst system. Secondly, the target amphiphilic A3B miktoarm star copolymer ((PNIPAAM)3(PVK)) was prepared via RAFT polymerization of N‐vinylcarbazole (NVC) employing (PNIPAAM)3 as the macro‐RAFT agent. The architecture of the amphiphilic A3B miktoarm star copolymers were characterized by GPC, 1H‐NMR spectra. Furthermore, the fluorescence intensity of micelle increased with the temperature and had a good temperature reversibility, which was investigated by dynamic light scattering (DLS), fluorescent and UV‐vis spectra. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4268–4278, 2010  相似文献   

3.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

4.
A cyclic selenium‐based reversible addition‐fragmentation chain transfer (RAFT) agent, 5,5‐dimethyl‐3‐phenyl‐2‐selenoxo‐1,3‐selenazolidin‐4‐one (RAFT‐Se), was synthesized and utilized in the RAFT polymerizations of vinyl acetate (VAc). Its analog, 5,5‐dimethyl‐3‐phenyl‐2‐thioxothiazolidin‐4‐one (RAFT‐S), was also used in RAFT polymerizations for comparison under identical conditions. The RAFT polymerizations of VAc with RAFT‐Se were moderately controlled evidenced by the increase of molecular weights with conversion, despite the slightly high Mw/Mn (less than 1.90), whereas the molecular weights were poorly controlled in the presence of RAFT‐S (2.00 < Mw/Mn < 2.30). Thanks to its unusual cyclic structure of RAFT‐Se, one or more RAFT‐Se species was incorporated into the resultant poly(VAc) as revealed by the results of cleavage of polymer and atomic absorption spectroscopy. Considering the biorelated functions of both poly(VAc) and Se element, this work undoubtedly provided a successful methodology of how to incorporate high content of Se into a molecular weight controlled poly(VAc). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

6.
The novel trifunctional initiator, 1‐(4‐methyleneoxy‐2,2,6,6‐tetramethylpip‐eridinoxyl)‐3,5‐bi(bromomethyl)‐2,4,6‐trimethylbenzene (TEMPO‐2Br), was successfully synthesized and used to prepare the miktoarm star amphiphilic poly(styrene)‐(poly(N‐isopropylacrylamide))2 (PS(PNIPAAM)2) via combination of atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) techniques. Furthermore, the star amphiphilic block copolymer, poly (styrene)‐(poly(N‐isopropylacrylamide‐b‐4‐vinylpyridine))2 (PS(PNIPAAM‐b‐P4VP)2), was also prepared using PS(PNIPAAM)2 as the macroinitiator and 4‐vinylpyridine as the second monomer by ATRP method. The obtained polymers were well‐defined with narrow molecular weight distributions (Mw/Mn ≤ 1.29). Meanwhile, the self‐assembly behaviors of the miktoarm amphiphilic block copolymers, PS(PNIPAAM)2 and PS(PNIPAAM‐b‐P4VP)2, were also investigated. Interestingly, the aggregate morphology changed from sphere‐shaped micelles (4.7 < pH < 3.0) to a mixture of spheres and rods (1.0 < pH < 3.0), and rod‐shaped nanorods formed when pH value was below 1.0. The LCST of PS(PNIPAAM)2 (pH = 7) was about 31 °C and the LCST of PS(PNIPAAM‐b‐P4VP)2 was about 35 °C (pH = 3). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6304–6315, 2009  相似文献   

7.
We report on the one‐pot synthesis of well‐defined ABC miktoarm star terpolymers consisting of poly(2‐(dimethylamino)ethyl methacrylate), poly(ε‐caprolactone), and polystyrene or poly(ethylene oxide) arms, PS(‐b‐PCL)‐b‐PDMA and PEO (‐b‐PCL)‐b‐PDMA, taking advantage of the compatibility and mutual tolerability of reaction conditions (catalysts and monomers) employed for atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and click reactions. At first, a novel trifunctional core molecule bearing alkynyl, hydroxyl group, and bromine moieties, alkynyl(? OH)? Br, was synthesized via the esterification reaction of 5‐ethyl‐5‐hydroxymethyl‐2,2‐dimethyl‐1,3‐dioxane with 4‐oxo‐4‐(prop‐2‐ynyloxy)butanoic acid, followed by deprotection and monoesterification of alkynyl(? OH)2 with 2‐bromoisobutyryl bromide. In the presence of trifunctional core molecule, alkynyl(? OH)? Br, and CuBr/PMDETA/Sn(Oct)2 catalytic mixtures, target ABC miktoarm star terpolymers, PS(‐b‐PCL)‐b‐PDMA and PEO(‐b‐PCL)‐b‐PDMA, were successfully synthesized in a one‐pot manner by simultaneously conducting the ATRP of 2‐(dimethylamino)ethyl methacrylate (DMA), ROP of ε‐caprolactone (ε‐CL), and the click reaction with azido‐terminated PS (PS‐N3) or azido‐terminated PEO (PEO‐N3). Considering the excellent tolerability of ATRP to a variety of monomers and the fast expansion of click chemistry in the design and synthesis of polymeric and biorelated materials, it is quite anticipated that the one‐pot concept can be applied to the preparation of well‐defined polymeric materials with more complex chain architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3066–3077, 2009  相似文献   

8.
Novel xanthate RAFT agents, RAFT1‐5, designed for the preparation of a range of novel N‐vinyl pyrrolidone‐based polymeric materials with linear and star architectures via RAFT polymerization are reported. Ethyl pyrrolidone moiety was included in the structures of the xanthates as a part of R (RAFT1‐3) or Z group (RAFT4) to evaluate their effect on the polymerization and to impart homogeneity in the resulting products. The xanthates were designed to fragment to give primary (RAFT1), secondary (RAFT2 and 4), and tertiary radicals (RAFT 3) allowing evaluation of their effect on polymerization. RAFT5 was designed to produce polymeric materials with four‐arm architectures. RAFT1 showed comparable characteristics as conventional radical polymerization. RAFT2 and RAFT4 exhibited living/controlled polymerizations, owing to the combination of stable secondary radical species and incorporation of ethyl pyrrolidone moiety as the R and Z group, respectively. RAFT2 and RAFT5 gave first examples of random copolymers of NVP and VAc with linear and four‐arm star architectures, all exhibiting monomodal distributions and narrow dispersity. The four‐arm PVAc star was used as a macroCTA to synthesize amphiphilic four‐arm star PVAc‐block‐PNVP. The TEM investigation showed the formation of spherical micelles with an average diameter of about 60 nm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 775–786  相似文献   

9.
A new approach was developed for synthesis of certain A3B3‐type of double hydrophilic or amphiphilic miktoarm star polymers using a combination of “grafting onto” and “grafting from” methods. To achieve the synthesis of desired miktoarm star polymers, acetyl protected poly(ethylene glycol) (PEG) thiols (Mn = 550 and 2000 g mol?1) were utilized to generate A3‐type of homoarm star polymers through an in situ protective group removal and a subsequent thiol–epoxy “click” reaction with a tris‐epoxide core viz. 1,1,1‐tris(4‐hydroxyphenyl)ethane triglycidyl ether. The secondary hydroxyl groups generated adjacent to the core upon the thiol–epoxy reaction were esterified with α‐bromoisobutyryl bromide to install atom transfer radical polymerization (ATRP) initiating sites. ATRP of N‐isopropylacrylamide (NIPAM) using the three‐arm star PEG polymer fitted with ATRP initiating sites adjacent to the core afforded A3B3‐type of double hydrophilic (PEG)3[poly(N‐isopropylacrylamide)] (PNIPAM)3 miktoarm star polymers. Furthermore, the generated hydroxyl groups were directly used as initiator for ring‐opening polymerization of ε‐caprolactone to prepare A3B3‐type of amphiphilic (PEG)3[poly(ε‐caprolactone)]3 miktoarm star polymers. The double hydrophilic (PEG)3(PNIPAM)3 miktoarm star polymers showed lower critical solution temperature around 34 °C. The preliminary transmission electron microscopy analysis indicated formation of self‐assembly of (PEG)3(PNIPAM)3 miktoarm star polymer in aqueous solution. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 146–156  相似文献   

10.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

11.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

12.
In this work, high molecular weight polyvinyl acetate (PVAc) (Mn,GPC = 123,000 g/mol, Mw/Mn = 1.28) was synthesized by reversible addition‐fragmentation chain transfer polymerization (RAFT) under high pressure (5 kbar), using benzoyl peroxide and N,N‐dimethylaniline as initiator mediated by (S)‐2‐(ethyl propionate)‐(O‐ethyl xanthate) (X1) at 35 °C. Polymerization kinetic study with RAFT agent showed pseudo‐first order kinetics. Additionally, the polymerization rate of VAc under high pressure increased greatly than that under atmospheric pressure. The “living” feature of the resultant PVAc was confirmed by 1H NMR spectroscopy and chain extension experiments. Well‐defined PVAc with high molecular weight and narrow molecular weight distribution can be obtained relatively fast by using RAFT polymerization at 5 kbar. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1430–1436  相似文献   

13.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

14.
Thermo‐responsive block copolymers based on poly(N‐vinylcaprolactam) (PNVCL) have been prepared by cobalt‐mediated radical polymerization (CMRP) for the first time. The homopolymerization of NVCL was controlled by bis(acetylacetonato)cobalt(II) and a molecular weight as high as 46,000 g/mol could be reached with a low polydispersity. The polymerization of NVCL was also initiated from a poly(vinyl acetate)‐Co(acac)2 (PVAc‐Co(acac)2) macroinitiator to yield well‐defined PVAc‐b‐PNVCL block copolymers with a low polydispersity (Mw/Mn = 1.1) up to high molecular weights (Mn = 87,000 g/mol), which constitutes a significant improvement over other techniques. The amphiphilic PVAc‐b‐PNVCL copolymers were hydrolyzed into unprecedented double hydrophilic poly(vinyl alcohol)‐b‐PNVCL (PVOH‐b‐PNVCL) copolymers and their temperature‐dependent solution behavior was studied by turbidimetry and dynamic light scattering. Finally, the so‐called cobalt‐mediated radical coupling (CMRC) reaction was implemented to PVAc‐b‐PNVCL‐Co(acac)2 precursors to yield novel PVAc‐b‐PNVCL‐b‐PVAc symmetrical triblock copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The synthesis of A4B4 miktoarm star copolymers, where A is polytetrahydrofuran (PTHF) and B is polystyrene (PSt), was accomplished with orthogonal initiators and consecutive cationic ring‐opening polymerization (CROP) and atom transfer radical polymerization (ATRP). The compound formed in situ from the reaction of 3‐{2,2‐bis[2‐bromo‐2‐(chlorocarbonyl) ethoxy] methyl‐3‐(2‐chlorocarbonyl) ethoxy} propoxyl‐2‐bromopropanoyl chloride [C(CH2OCH2CHBrCOCl)4] with silver perchlorate was used to initiate the CROP of tetrahydrofuran. The obtained polymer contained four secondary bromine groups at the α position to the original initiator sites and was used to initiate the ATRP of styrene with a CuBr/2,2′‐bipyridine catalyst to form a C(PTHF)4(PSt)4 miktoarm star copolymer. The miktoarm copolymer was characterized by gel permeation chromatography and 1H NMR. The macroinitiator C(PTHF)4Br4 was hydrolyzed to afford PTHF arms. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2134–2142, 2001  相似文献   

17.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

18.
Well‐defined amphiphilic and thermoresponsive ABC miktoarm star terpolymer consisting of poly(ethylene glycol), poly(tert‐butyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PtBMA)‐b‐PNIPAM, was synthesized via a combination of consecutive click reactions and atom transfer radical polymerization (ATRP). Click reaction of monoalkynyl‐terminated PEG with a trifunctional core molecule bis(2‐azidoethyl)amine, (N3)2? NH, afforded difunctional PEG possessing an azido and a secondary amine moiety at the chain end, PEG‐NH? N3. Next, the amidation of PEG‐NH? N3 with 2‐chloropropionyl chloride led to PEG‐based ATRP macroinitiator, PEG(? N3)? Cl. The subsequent ATRP of N‐isopropylacrylamide (NIPAM) using PEG(? N3)? Cl as the macroinitiator led to PEG(? N3)‐b‐PNIPAM bearing an azido moiety at the diblock junction point. Finally, well‐defined ABC miktoarm star terpolymer, PEG(‐b‐PtBMA)‐b‐PNIPAM, was prepared via the click reaction of PEG(? N3)‐b‐PNIPAM with monoalkynyl‐terminated PtBMA. In aqueous solution, the obtained ABC miktoarm star terpolymer self‐assembles into micelles consisting of PtBMA cores and hybrid PEG/PNIPAM coronas, which are characterized by dynamic and static laser light scattering, and transmission electron microscopy. On heating above the phase transition temperature of PNIPAM in the hybrid corona, micelles initially formed at lower temperatures undergo further structural rearrangement and fuse into much larger aggregates solely stabilized by PEG coronas. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4001–4013, 2009  相似文献   

19.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐vinylcarbazole (NVK) mediated by macromolecular xanthates was used to prepare three types of block copolymers containing poly(N‐vinylcarbazole) (PVK). Using a poly(ethylene glycol) monomethyl ether based xanthate ( PEG‐X ), the RAFT polymerization of NVK proceeded in a controlled way to afford a series of PEG‐b‐PVK with different PVK chain lengths. Successive RAFT polymerization of NVK and vinyl acetate (VAc) with a small molecule xanthate ( X1 ) as the chain transfer agent was tested to prepare PVK‐b‐PVAc. Though both monomers can be homopolymerized in a controlled manner with this xanthate, only by polymerizing NVK first could give well‐defined block copolymers. The xanthate groups in the end of PVK could be removed by radical‐induced reduction using tributylstannane, and PVK‐b‐PVA was obtained by further hydrolysis of PVK‐b‐PVAc under basic conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Well‐defined amphiphilic PCL‐b‐(PDMA)2 and (PCL)2b‐PDMA Y‐shaped miktoarm star copolymers and PCL‐b‐PDMA linear diblock copolymer were synthesized via a combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), where PCL is poly (ε‐caprolactone) and PDMA is poly(2‐(dimethylamino)ethyl methacrylate). All of these three types of copolymers have comparable PCL contents and overall molecular weights. The PCL block is hydrophobic while the PDMA block is hydrophilic, and they behave like polymeric surfactants and self‐assemble into PCL‐core micelles in aqueous media. The chain architectural effects on the micellization properties, including the aggregation number, size, polydispersity, and micelle densities of (PCL29)2b‐PDMA45, PCL61b‐(PDMA24)2, and PCL56b‐PDMA49 in dilute aqueous solution, were then explored by dynamic and static laser light scattering (LLS). The intensity–average hydrodynamic radius, 〈Rh〉, the aggregation number per micelle, Nagg, and the core radius, Rcore, of the PCL‐core micelles all increased in the order PCL61b‐(PDMA24)2 < (PCL29)2b‐PDMA45 < PCL56b‐PDMA49. The surface area occupied per soluble PDMA block at the core/corona interface increased in the order PCL61b‐(PDMA24)2 < PCL56b‐PDMA49 < (PCL29)2b‐PDMA45. PCL61b‐(PDMA24)2 micelles had the largest overall micelle density, possibly because of that the presence of two soluble PDMA arms at the junction point favors the bending of the core–corona interface and thus the formation of densely‐packed core‐shell nanostructures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1446–1462, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号