首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Desorption electrospray ionization (DESI) mass spectrometry has been implemented on a commercial ion‐trap mass spectrometer and used to optimize mass spectrometric conditions for DNA nucleobases: adenine, cytosine, thymine, and guanine. Experimental parameters including spray voltage, distance between mass spectrometer inlet and the sampled spot, and nebulizing gas inlet pressure were optimized. Cluster ions including some magic number clusters of nucleobases were observed for the first time using DESI mass spectrometry. The formation of the cluster species was found to vary with the nucleobases, acidification of the spray solvent, and the deposited sample amount. All the experimental results can be explained well using a liquid film model based on the two‐step droplet pick‐up mechanism. It is further suggested that solubility of the analytes in the spray solvent is an important factor to consider for their studies by using DESI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Internal energy distributions in desorption electrospray ionization (DESI)   总被引:3,自引:2,他引:1  
The internal energy distributions of typical ions generated by desorption electrospray ionization (DESI) were measured using the "survival yield" method, and compared with corresponding data for electrospray ionization (ESI) and electrosonic spray ionization (ESSI). The results show that the three ionization methods produce populations of ions having internal energy distributions of similar shapes and mean values (1.7-1.9 eV) suggesting similar phenomena, at least in the later stages of the process leading from solvated droplets to gas-phase ions. These data on energetics are consistent with the view that DESI involves "droplet pick-up" (liquid-liquid extraction) followed by ESI-like desolvation and gas-phase ion formation. The effects of various experimental parameters on the degree of fragmentation of p-methoxy-benzylpyridinium ions were compared between DESI and ESSI. The results show similar trends in the survival yields as a function of the nebulizing gas pressure, solvent flow rate, and distance from the sprayer tip to the MS inlet. These observations are consistent with the mechanism noted above and they also enable the user to exercise control over the energetics of the DESI ionization process, through manipulation of external and internal ion source parameters.  相似文献   

3.
The direct analysis of pharmaceutical formulations and active ingredients from non‐bonded reversed‐phase thin layer chromatography (RP‐TLC) plates by desorption electrospray ionisation (DESI) combined with ion mobility mass spectrometry (IM‐MS) is reported. The analysis of formulations containing analgesic (paracetamol), decongestant (ephedrine), opiate (codeine) and stimulant (caffeine) active pharmaceutical ingredients is described, with and without chromatographic development to separate the active ingredients from the excipient formulation. Selectivity was enhanced by combining ion mobility and mass spectrometry to characterise the desorbed gas‐phase analyte ions on the basis of mass‐to‐charge ratio (m/z) and gas‐phase ion mobility (drift time). The solvent composition of the DESI spray using a step gradient was varied to optimise the desorption of active pharmaceutical ingredients from the RP‐TLC plates. The combined RP‐TLC/DESI‐IM‐MS approach has potential as a rapid and selective technique for pharmaceutical analysis by orthogonal gas‐phase electrophoretic and mass‐to‐charge separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Sulfated oligosaccharides derived from glycosaminoglycans (GAGs) are fragile compounds, highly polar and anionic. We report here on the rare but successful application of desorption electrospray ionization (DESI) — LTQ‐Orbitrap mass spectrometry (MS) to the high‐resolution analysis of anionic and sulfated oligosaccharides derived from the GAGs hyaluronic acid and heparin. For that purpose, key parameters affecting DESI performance, comprising the geometric parameters of the DESI source, the probed surface and the spraying conditions, applied spray voltage, flow rates and solvent composition were investigated. Under suitable conditions, the DESI technique allows the preservation of the structural integrity of such fragile compounds. DESI enabled the sensitive detection of anionic hyaluronic acid and heparin oligosaccharides with a limit of detection (LOD) down to 5 fmol (≈10 pg) for the hyaluronic acid decasaccharide. Detection of hyaluronic acid oligosaccharides in urine sample was also successfully achieved with LOD values inferior to the ng range. Multistage tandem mass spectrometry (MSn) through the combination of the DESI source with a hybrid linear ion trap‐orbitrap mass spectrometer allowed the discrimination of isomeric sulfated oligosaccharides and the sequence determination of a hyaluronic acid decasaccharide. These results open promising ways in glycomic and glycobiology fields where structure–activity relationships of bioactive carbohydrates are currently questioned. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Desorption electrospray ion source (DESI) is widely used as an MS imaging technique. It is a rapid and convenient method of surface analysis, but to date, there are methodological obstacles to its application to the analysis of cell culture. This study reported optimised conditions for the analysis of cell culture samples. Parameters such as the surface, medium removal and sample desiccation techniques were assessed as a function of output data quality. Supercharging agents, surfactants and optimal parameters for the DESI ion source were evaluated for use in cell culture analyses. Data indicated that plastic dishes or sodium glass coated with poly‐l ‐lysine and washing cell cultures with 150 mM ammonium acetate followed by drying with inert gas were superior for DESI analyses. The addition of 1 μM surfactin to the DESI spray solvent significantly improved the results for negative and positive ion modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
W Rao  DJ Scurr  J Burston  MR Alexander  DA Barrett 《The Analyst》2012,137(17):3946-3953
Desorption electrospray ionisation (DESI) mass spectrometry images usually contain a large amount of information that can be difficult to interpret in an objective manner. We explore the use of imaging multivariate analysis (MVA) on DESI images of protein spots and rat brain sections to automatically assign peaks and improve discrimination of spatially important features. DESI parameters were optimised on an ion trap mass spectrometer for (a) consistent imaging of dried single and mixture spots of insulin, myoglobin and BSA from a Permanox slide, and (b) to produce a MS image of rat brain coronal section at 100 μm resolution. Multivariate curve resolution (MCR), an imaging MVA technique was applied to these images after appropriate data binning. MCR analysis on DESI images of protein mixture spots allowed the multiply charged peaks of a number of proteins to be distinctly separated. Application of MCR to a DESI image of a rat brain coronal section deconvoluted the image into components that showed biologically important features. Further application of MCR to a subsection of the image produced a component that clearly separated out the substantia nigra region, which allowed us to produce a biochemical anatomy for this area of the brain. We have demonstrated the ability of imaging MVA to automatically and objectively analyse DESI images of standardised and complex biological samples, and have shown its capacity for detailed spatial profiling of biomolecules in specific morphological regions. We propose the routine use of this technique for future DESI imaging experiments.  相似文献   

7.
Aspects of the development of mass spectrometry over the past three decades are briefly reviewed and growth points in the subject are identified. Molecular imaging by mass spectrometry is one such growth area. The development of a capability for 2D chemical imaging of surfaces is described, based on the combination of a desorption electrospray ionization (DESI) ion source with an automated surface stage capable of x, y translational motion. The lateral resolution of this new system is found to be less than 200 microns, using a test ink pattern. Chemical imaging of surfaces is demonstrated using model examples of organic and biological systems: (i) imaging of a 2D pattern written in different colored inks on photographic paper and (ii) imaging of thin coronal sections of rat brain tissue fixed onto a glass microscope slide. In both cases, full mass spectra are recorded as a function of x,y-position on the surface. In the chemical imaging example, the distributions of the two different inks on the paper surface were mapped by tracking the abundance of the intact organic cation which characterizes each particular ink dye. In the tissue imaging example, distributions of specific lipids in coronal sections of rat brain tissue were followed from the abundance distributions in 2D space of the deprotonated lipid molecules recorded in the negative ion mass spectra. These latter distributions reveal distinct anatomical features of the rat brain. The results of these studies demonstrate the feasibility of performing surface imaging studies using DESI and show that at this stage of its development it has a lateral spatial resolution of a few hundred microns.  相似文献   

8.
Implementation of desorption electrospray ionization (DESI) technique on a 9.4 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is described. Desorption electrospray technique is capable of the direct investigation of natural samples without any need for sample preparation or chromatographic separation. Since the DESI mass spectra of natural samples are very complex owing to the lack of preseparation or cleanup, the ideal mass spectrometric analyzer for these applications is a high-resolution instrument such as FTICR mass spectrometer. DESI was implemented by constructing an electronically controlled source framework comprising six linear moving stages and one rotating stage. A three-dimensional linear stage was used to accommodate samples, while another 3D linear stage equipped with rotating stage was used as a spray mount. A modified electrosonic sprayer was used as a primary electrospray device. DESI-FTICR setup was characterized with regard to geometrical, electrical and flow conditions using deposited peptide samples in range of 1-100 pmol gross deposited amount on glass and polymer surfaces. Optimized conditions enabled the routine acquisition of DESI-MS spectra on the instrument at 130 000 resolution in the broadband mode and with comparable sensitivity to data reported in the literature. Since the main significance of DESI-FTICR MS is the combination of intact tissue analysis, the capabilities of the technique were demonstrated by analyzing murine liver samples. Presence of lysophospholipids in the liver tissue was tentatively associated with the lipid metabolism taking place in liver. DESI-FTICR is also a promising technique in the field of peptide analysis due to capability of top-down sequencing using electron capture dissociation. As a proof-of-principle experiment, a small synthetic polypeptide containing 36 amino acids was ionized using DESI and was sequenced in the FTICR by means of ECD (electron capture dissociation) fragmentation. Spectra gave almost full sequence information in agreement with the known amino acid sequence of the species.  相似文献   

9.
Talaty N  Takáts Z  Cooks RG 《The Analyst》2005,130(12):1624-1633
Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.  相似文献   

10.
Negative ion desorption electrospray ionization (DESI) was used for the analysis of an ex vivo tissue sample set comprising primary colorectal adenocarcinoma samples and colorectal adenocarcinoma liver metastasis samples. Frozen sections (12 μm thick) were analyzed by means of DESI imaging mass spectrometry (IMS) with spatial resolution of 100 μm using a computer-controlled DESI imaging stage mounted on a high resolution Orbitrap mass spectrometer. DESI-IMS data were found to predominantly feature complex lipids, including phosphatidyl-inositols, phophatidyl-ethanolamines, phosphatidyl-serines, phosphatidyl-ethanolamine plasmalogens, phosphatidic acids, phosphatidyl-glycerols, ceramides, sphingolipids, and sulfatides among others. Molecular constituents were identified based on their exact mass and MS/MS fragmentation spectra. An identified set of molecules was found to be in good agreement with previously reported DESI imaging data. Different histological tissue types were found to yield characteristic mass spectrometric data in each individual section. Histological features were identified by comparison to hematoxylin-eosin stained neighboring sections. Ions specific to certain histological tissue types (connective tissue, smooth muscle, healthy mucosa, healthy liver parenchyma, and adenocarcinoma) were identified by semi-automated screening of data. While each section featured a number of tissue-specific species, no potential global biomarker was found in the full sample set for any of the tissue types. As an alternative approach, data were analyzed by principal component analysis (PCA) and linear discriminant analysis (LDA) which resulted in efficient separation of data points based on their histological types. A pixel-by-pixel tissue identification method was developed, featuring the PCA/LDA analysis of authentic data set, and localization of unknowns in the resulting 60D, histologically assigned LDA space. Novel approach was found to yield results which are in 95% agreement with the results of classical histology. KRAS mutation status was determined for each sample by standard molecular biology methods and a similar PCA/LDA approach was developed to assess the feasibility of the determination of this important parameter using solely DESI imaging data. Results showed that the mutant and wild-type samples fully separated. DESI-MS and molecular biology results were in agreement in 90% of the cases.  相似文献   

11.
The efficiency of desorption/ionization becomes more critical as the sampled surface area decreases. Desorption electrospray and desorption nanoelectrospray belong to ambient ionizations and enable direct surface analysis including mass spectrometric imaging. Lateral resolution in tens of micrometers was demonstrated for desorption nanoelectrospray previously, but sensitivity of the surface scan can be an issue. For desorption electrospray, the drag force in the source is driven by the flow of used gases and vacuum suction. Ion signal intensity can be improved by controlling the nebulizing gas flow rate or auxiliary pumping of a closed compartment in front of the mass spectrometer inlet. Because nanoelectrospray generates charged droplets without the assistance of a nebulizing gas, only vacuum suction drives the gas flow. In this study, the effect of pressure drop between the atmospheric and evacuated region of a mass spectrometer on the ion signal intensity was investigated for desorption nanoelectrospray. A modification of the commercial inlet was designed. An auxiliary pump was directly connected to an inner compartment of the modified mass spectrometer inlet through a needle valve that enabled the regulation of the reduced pressure. Adjustment of the pressure drop significantly increased signal intensity (more than one order of magnitude in some cases). To a lesser extent, the temperature of a heated capillary (an integral part of the inlet) also influenced the signal intensity. The applicability of desorption nanoelectrospray equipped with pressure regulation was demonstrated by the analysis of synthetic cathinones or a pill of paracetamol. Because pressure in the inlet depends on the diameters of orifices and the power of vacuum systems of mass spectrometers, the effect of the pressure regulation can be different for different instruments. Nevertheless, the presented results confirmed the importance of pressure drop‐driven transport for desorption nanoelectrospray efficiency and can encourage its new applications.  相似文献   

12.
Reactive desorption electrospray ionization (DESI), an ambient technique, has been explored as a tool for the development of a fast screening approach for supramolecular complexes capitalizing on the specificity of mass spectrometric detection. A library of twelve potential guests for inclusion by a β‐cyclodextrin host was initially screened via DESI using a spray solution incorporating the host directed toward an array of deposited guests. The steroid nortestosterone was used to verify the applicability of reactive DESI for complexation experiments with β‐cyclodextrin. Results from the DESI experiment and results from an analogous electrospray ionization (ESI) mass spectral screen were compared with solution‐phase data obtained by nuclear magnetic resonance (NMR) spectroscopy. The complexes detected using DESI were identical to those determined using NMR, validating the applicability of the technique to supramolecular applications, but the ESI data exhibited significant disparities, predominantly due to the interference of nonspecific artifacts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A skin sample from a South‐Andean mummy dating back from the XIth century was analyzed using time‐of‐flight secondary ion mass spectrometry imaging using cluster primary ion beams (cluster‐TOF‐SIMS). For the first time on a mummy, skin dermis and epidermis could be chemically differentiated using mass spectrometry imaging. Differences in amino‐acid composition between keratin and collagen, the two major proteins of skin tissue, could indeed be exploited. A surprising lipid composition of hypodermis was also revealed and seems to result from fatty acids damage by bacteria. Using cluster‐TOF‐SIMS imaging skills, traces of bio‐mineralization could be identified at the micrometer scale, especially formation of calcium phosphate at the skin surface. Mineral deposits at the surface were characterized using both scanning electron microscopy (SEM) in combination with energy‐dispersive X‐ray spectroscopy and mass spectrometry imaging. The stratigraphy of such a sample was revealed for the first time using this technique. More precise molecular maps were also recorded at higher spatial resolution, below 1 µm. This was achieved using a non‐bunched mode of the primary ion source, while keeping intact the mass resolution thanks to a delayed extraction of the secondary ions. Details from biological structure as can be seen on SEM images are observable on chemical maps at this sub‐micrometer scale. Thus, this work illustrates the interesting possibilities of chemical imaging by cluster‐TOF‐SIMS concerning ancient biological tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Ambient mass spectrometry is useful for analyzing compounds that would be affected by other chemical procedures. Poison frogs are known to sequester alkaloids from their diet, but the sequestration pathway is unknown. Here, we describe methods for whole‐body cryosectioning of frogs and use desorption electrospray ionization mass spectrometry imaging (DESI‐MSI) to map the orally administered alkaloid histrionicotoxin 235A in a whole‐body section of the poison frog Dendrobates tinctorius. Our results show that whole‐body cryosectioning coupled with histochemical staining and DESI‐MSI is an effective technique to visualize alkaloid distribution and help elucidate the mechanisms involved in alkaloid sequestration in poison frogs.  相似文献   

15.
江玮  喻钢 《分析测试学报》2012,31(4):430-435
自建了简易的电喷雾解吸电离源(DESI),优化了DESI源喷口的位置和角度,并将其用于常见多肽和蛋白质的分析。多肽和小质量蛋白质(<20 kDa)可以容易地从表面解吸电离,生成清晰的质谱。而牛血清白蛋白(66.4 kDa)不能产生清晰的多电荷分布的质谱,说明当前DESI源的设计可能存在一个电离的分子量上限。通过比较不同的实验条件并对比ESI-MS,发现溶剂分子的挥发过程对电荷分布以及峰宽均有显著影响,可能是由于ESI更软引起。载样表面的性质对DESI-MS的信号强度有较大影响。金表面的自组装单分子膜(SAM)相对于纯金表面有较好的绝缘性,并有助于产生较强信号,说明来自表面的电子转移(电中和)是电喷雾解吸电离过程中的一个重要因素。该文的研究有助于对DESI-MS的实验条件和载样表面的选择,同时增进了对电喷雾解吸电离机理的了解。  相似文献   

16.
Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography–mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid–liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI–HRMS, and free steroids by positive ion mode DAPPI–HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy.  相似文献   

17.

Rationale

Mass spectrometry imaging (MSI) is a powerful tool for mapping the surface of a sample. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) and atmospheric pressure matrix‐assisted laser desorption/ionization (AP‐MALDI) offer complementary capabilities. Here, we present a workflow to apply both techniques to a single tissue section and combine the resulting data for the example of human colon cancer tissue.

Methods

Following cryo‐sectioning, images were acquired using the high spatial resolution (1 μm pixel size) provided by TOF‐SIMS. The same section was then coated with a para‐nitroaniline matrix and images were acquired using AP‐MALDI coupled to an Orbitrap mass spectrometer, offering high mass resolution, high mass accuracy and tandem mass spectrometry (MS/MS) capabilities. Datasets provided by both mass spectrometers were converted into the open and vendor‐independent imzML file format and processed with the open‐source software MSiReader.

Results

The TOF‐SIMS and AP‐MALDI mass spectra show strong signals of fatty acids, cholesterol, phosphatidylcholine and sphingomyelin. We showed a high correlation between the fatty acid ions detected with TOF‐SIMS in negative ion mode and the phosphatidylcholine ions detected with AP‐MALDI in positive ion mode using a similar setting for visualization. Histological staining on the same section allowed the identification of the anatomical structures and their correlation with the ion images.

Conclusions

This multimodal approach using two MSI platforms shows an excellent complementarity for the localization and identification of lipids. The spatial resolution of both systems is at or close to cellular dimensions, and thus spatial correlation can only be obtained if the same tissue section is analyzed sequentially. Data processing based on imzML allows a real correlation of the imaging datasets provided by these two technologies and opens the way for a more complete molecular view of the anatomical structures of biological tissues.
  相似文献   

18.
This paper reports use of a combination of Fourier-transform infrared (FTIR) spectroscopic imaging and desorption electrospray ionization linear ion-trap mass spectrometry (DESI MS) for characterization of counterfeit pharmaceutical tablets. The counterfeit artesunate antimalarial tablets were analyzed by both techniques. The results obtained revealed the ability of FTIR imaging in non-destructive micro-attenuated total reflection (ATR) mode to detect the distribution of all components in the tablet, the identities of which were confirmed by DESI MS. Chemical images of the tablets were obtained with high spatial resolution. The FTIR spectroscopic imaging method affords inherent chemical specificity with rapid acquisition of data. DESI MS enables high-sensitivity detection of trace organic compounds. Combination of these two orthogonal surface-characterization methods has great potential for detection and analysis of counterfeit tablets in the open air and without sample preparation.  相似文献   

19.
Glycerophospholipids are a highly abundant and diverse collection of biologically relevant lipids, and distinction between isomeric and isobaric species is a fundamental aspect for confident identification. The ability to confidently assign a unique structure to a glycerophospholipid of interest is dependent on determining the number and location of the points of unsaturation and assignment of acyl chain position. The use of high‐energy electrons (>20 eV) to induce gas‐phase dissociation of intact precursor ions results in diagnostic product ions for localizing double‐bond positions and determining acyl chain assignment. We describe a high‐resolution, tandem mass spectrometry method for structure characterization of glycerophospholipids using electron‐induced dissociation (EID). Furthermore, the inclusion of nomenclature to systematically assign bond cleavage sites with acyl chain position and double‐bond location enables a uniform platform for lipid identification. The EID methodology detailed here combines novel application of an electron‐based dissociation technique with high‐resolution mass spectrometry that facilitates a new experimental approach for lipid biomarker discovery and validation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Composition of mobile phase can greatly influence the success of electrospray ionization (ESI)‐interfaced liquid chromatography–mass spectrometry analysis. To investigate the relationship between formic‐acid‐based modification of mobile phase and ESI nebulizing conditions, an API 4000 ESI source and a TSQ Quantum one were compared under the same chromatographic conditions. Ginkgo terpene lactones and flavonols were measured in plasma, which involved using ascorbic acid to circumvent cross‐interference between the analytes. ESI responses to using formic acid included changes in signal intensity, matrix effect, and upper limit of quantification. Significant disparities in the responses were observed between the two ESI sources, suggesting that the use of electrolyte modifier in liquid chromatography mobile phase and the pneumatic nebulization for ESI should be properly balanced to accomplish optimal ESI‐based analysis. The distribution of unpaired ions toward the surface of the initial droplet was assumed to be an important step in the pneumatic ESI process. When using the electrolyte in mobile phase, a too fast droplet reduction by rapid‐heating‐assisted pneumatic nebulization could negatively decrease the time available for the unpaired ions to migrate from droplet interior to its surface. Ascorbic acid was identified as a major interfering substance for the bioanalytical assay; the interference mechanism might be associated with hindering the unpaired analyte ions from distributing toward the droplet surface rather than outcompeting the analyte ions for the limited excess charge on droplets surface. The current work extends the knowledge base of pneumatic ESI, which has implication for optimal use of the ESI‐interfaced liquid chromatography–mass spectrometry technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号