首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Novel Y‐type polyester 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which are parts of the polymer backbone, was prepared, and its NLO properties were investigated. Polyester 4 is soluble in common organic solvents such as N,N‐dimethylformamide and dimethylsulfoxide. Polymer 4 shows a thermal stability up to 250 °C from thermogravimetric analysis with glass‐transition temperature obtained from differential scanning calorimetry of approximately 94 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1560‐nm fundamental wavelength is 8.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 6 °C higher than glass‐transition temperature (Tg), and no significant SHG decay is observed below 100 °C due to the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Novel X‐type polyurethane 5 containing 4‐(2′,2′‐dicyanovinyl)‐6‐nitroresorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute parts of the polymer backbone, was prepared and characterized. Polyurethane 5 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It shows thermal stability up to 280 °C from thermogravimetric analysis with a glass transition temperature (Tg) obtained from differential scanning calorimetry thermogram of around 120 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1064‐nm fundamental wavelength is around 6.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 5 °C higher than Tg, and there was no SHG decay below 125 °C due to the partial main chain character of the polymer structure, which is acceptable for NLO device applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
1‐{3,4‐Di‐(2‐hydroxyethoxy)phenyl}‐2‐(2‐thiophenyl)ethene (5) was prepared and condensed with terephthaloyl chloride to yield polyester (6). Polymer 6 was reacted with tetracyanoethylene to give a new Y‐type polyester (7) containing 1‐(3,4‐dioxyethoxy)phenyl‐2‐{5‐(2,2,3‐tricyanovinyl)‐2‐thiophenyl)}ethenyl groups as NLO‐chromophores, which are components of the polymer backbones. Polyester 7 is soluble in common organic solvents such as N,N‐dimethylformamide and acetone. Polymer 7 showed a thermal stability up to 300 °C in thermogravimetric analysis with glass transition temperature (Tg) obtained from differential scanning calorimetry near 126 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at the 1560 nm fundamental wavelength was around 6.57 × 10?9 esu. The dipole alignment exhibited high thermal stability up to the Tg, and there was no SHG decay below 125 °C due to the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1911–1919, 2009  相似文献   

4.
2,4‐Bis‐(3,4‐dicarboxyphenylcarboxyethoxy)‐1‐(2,2‐dicyanovinyl)benzene dianhydride (4) was prepared and reacted with 4,4′‐oxydianiline, 4,4′‐diaminobenzanilide and 4,4′‐(hexafluoroisopropylidene)dianiline to yield novel Y‐type polyimides 5‐7 containing 2,4‐dioxybenzylidenemalononitrile groups as nonlinear optical (NLO) chromophores, which constitute parts of the polymer backbone. The resulting polyimides 5‐7 are soluble in polar solvents such as dimethylsulfoxide and N,N‐dimethylformamide. Polymers 5‐7 showed a thermal stability up to 330 °C in thermogravimetric analysis thermograms with Tg values obtained from differential scanning calorimetry thermograms in the range 179–194 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 5.56 × 10?9 esu. The dipole alignment exhibited exceptionally high thermal stability even at 20 °C higher than the glass‐transition temperature there was no SHG decay below 215 °C because of the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3078–3087, 2008  相似文献   

5.
Novel X‐type polyurethane 4 containing 4‐(4‐nitrophenylazo)‐6‐nitroresorcinoxy groups as nonlinear optical (NLO) chromophores, which are parts of the polymer main chains, was prepared and characterized. Polyurethane 4 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It shows thermal stabilities up to 270 °C from thermogravimetric analysis with glass transition temperature obtained from differential scanning calorimetry of about 134 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1064 nm fundamental wavelength is 5.37 × 10?9 esu. Polymer 4 exhibits a thermal stability up to Tg, and no significant SHG decay is observed below 135 °C, which is acceptable for NLO device applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 760–766  相似文献   

6.
A poly(acrylamide) was synthesized from N α -Boc-N ? -acrolyl-l-lysylglycine methyl ester via radical polymerization. This polymer typically had Mn ~ 100,000 g/mol, Mw ~ 300,000 g/mol, and a Tg of 93°C. Removal of Boc with TFA and cyclization with DABCO? in DMSO at 65°C afforded a soluble piperazinedione-containing polymer that had a Tg of 157°C and thermal stability up to 300°C. These results demonstrate a viable and efficient synthetic route to piperazinedione-containing polyacrylamides of high molecular weight. Related polymers that incorporate substituted indane moieties could be useful high Tg materials for fabrication of LC and NLO devices.  相似文献   

7.
High‐molecular‐weight poly(phthalazinone)s with very high glass‐transition temperatures (Tg's) were synthesized via a novel N–C coupling reaction. New bisphthalazinone monomers ( 7a–e ) were synthesized from 2‐(4‐chlorobenzoyl) phthalic acid in two steps. Poly(phthalazinone)s, having inherent viscosities in the range of 0.34–0.91 dL/g, were prepared by the reaction of the bis(phthalazinone) monomers with an activated aryl halide in a dipolar aprotic solvent in the presence of potassium carbonate. The poly(phthalazinone)s exhibited Tg's greater than 230 °C. polymer 8b synthesized from diphenyl biphenol and bis(4‐flurophenyl) sulfone demonstrated the highest Tg of 297 °C. Thermal stabilities of the poly(phthalazinone)s were determined by thermogravimetric analysis. All the poly(phthalazinone)s showed a similar pattern of decomposition with no weight loss below 450 °C in nitrogen. The temperatures of 5% weight loss were observed to be about 500 °C. The poly(phthalazinone)s containing 4,4′‐isopropylidenediphenol and 4,4′‐(hexafluoroisopropylidene) diphenol and diphenyl ether linkage were soluble in chlorinated solvents such as chloroform. Other poly‐(phthalazinone)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(phthalazinone)s can be cast as flexible films from solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2481–2490, 2003  相似文献   

8.
A series of poly(o‐hydroxy amide)s having both ether and sulfone linkages in the main chain were synthesized via the low‐temperature solution polycondensation of 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoyl chloride and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoyl chloride with three bis(o‐aminophenol)s including 4,4′‐diamino‐3,3′‐dihydroxybiphenyl, 3,3′‐diamino‐4,4′‐dihydroxybiphenyl, and 2,2‐bis(3‐diamino‐4‐hydroxyphenyl)hexafluoropropane. Subsequent thermal cyclodehydration of the poly(o‐hydroxy amide)s afforded polyethersulfone benzoxazoles. Most of the poly(o‐hydroxy amide)s were soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone; however, the polybenzoxazoles without the hexafluoroisopropylidene group were organic‐insoluble. The polybenzoxazoles exhibited glass‐transition temperatures (Tg) in the range of 219–282 °C by DSC and softening temperatures (Ts) of 242–320 °C by thermomechanical analysis. Thermogravimetric analyses indicated that most polybenzoxazoles were stable up to 450 °C in air or nitrogen. The 10% weight loss temperatures were recorded in the ranges of 474–593 °C in air and 478–643 °C in nitrogen. The methyl‐substituted polybenzoxazoles had higher Tg's but lower Ts's and initial decomposition temperatures compared with the corresponding unsubstituted polybenzoxazoles. For a comparative purpose, the synthesis and characterization of a series of sulfonyl polybenzoxazoles without the ether group that derived from 4,4′‐sulfonyldibenzoyl chloride and bis(o‐aminophenol)s were also reported. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2262–2270, 2001  相似文献   

9.
A self‐polymerizable quinoxaline monomer (A‐B) has been synthesized and polymerized via aromatic nucleophilic substitution reactions. An isomeric mixture of self‐polymerizable quinoxaline monomers—2‐(4‐hydroxyphenyl)‐3‐phenyl‐6‐fluoroquinoxaline and 3‐(4‐hydroxyphenyl)‐2‐phenyl‐6‐fluoroquinoxaline—was polymerized in N‐methyl‐2‐pyrrolidinone (NMP) to afford high molecular weight polyphenylquinoxaline (PPQ) with intrinsic viscosities up to 1.91 dL/g and a glass‐transition temperature (Tg) of 251 °C. A series of comonomers was polymerized with A‐B to form PPQ/polysulfone (PS), PPQ/polyetherether ketone (PEEK), and PPQ/polyethersulfone (PES) copolymers. The copolymers readily obtained high intrinsic viscosities when fluorine was displaced in NMP under reflux. However, single‐electron transfer (SET) side reactions, which limit molecular weight, played a more dominant role when chlorine was displaced instead of fluorine. SET side reactions were minimized in the synthesis of PPQ/PS copolymers through mild polymerization conditions in NMP for longer polymerization times. Thus, the Tg's of PES (Tg = 220 °C), PEEK (Tg = 145 °C), and PS (Tg = 195 °C) were raised through the incorporation of quinoxaline units into the polymer. Copolymers with high intrinsic viscosities resulted in all cases, except in the case of PPQ/PEEK copolymers when 4,4′‐dichlorobenzophenone was the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci A Part A: Polym Chem 39: 2037–2042, 2001  相似文献   

10.
The bulk free‐radical polymerization of 2‐[(N,N‐dialkylamino)methyl]‐1,3‐butadiene with methyl, ethyl, and n‐propyl substituents was studied. The monomers were synthesized via substitution reactions of 2‐bromomethyl‐1,3‐butadiene with the corresponding dialkylamines. For each monomer the effects of the polymerization initiator, initiator concentration, and reaction temperature on the final polymer structure, molecular weight, and glass‐transition temperature (Tg) were examined. Using 2,2′‐azobisisobutyronitrile as the initiator at 75 °C, the resulting polymers displayed a majority of 1,4 microstructures. As the temperature was increased to 100 and 125 °C using t‐butylperacetate and t‐butylhydroperoxide, the percentage of the 3,4 microstructure increased. Differential scanning calorimetry indicated that all of the Tg values were lower than room temperature. The Tg values were higher when the majority of the polymer structure was 1,4 and decreased as the percentage of the 3,4 microstructure increased. The Diels–Alder side products found in the polymer samples were characterized using NMR and gas chromatography‐mass spectrometry methods. The polymerization temperature and initiator concentration were identified as the key factors that influenced the Diels–Alder dimer yield. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4070–4080, 2000  相似文献   

11.
A series of thermally stable organic/inorganic second‐order nonlinear optical (NLO) composites via sequential self‐repetitive reaction (SSRR) and sol–gel process has been developed. This SSRR is based on carbodiimide (CDI) chemistry. The difunctional azo chromophores (2,4‐diamino‐4′‐(4‐ nitrophenyl‐diazenyl)azobenzene (DNDA)) was reacted with excessive amount of 4, 4′‐methylene‐ diphenylisocyanate (MDI) to form poly‐CDI, and subsequently trimellitic anhydride (TMA) was added to obtain poly(N‐acylurea). The organic/inorganic composites containing prepolymer of phenyltriethoxysilane (PTEOS) and poly(N‐acylurea) in different weight ratios (10:90, 30:70, 50:50, 70:30, 90:10 wt%) were prepared, respectively. The moderate glass transition temperature (Tg) characteristic of the poly(N‐acylurea) allows the NLO‐active polymer to achieve high poling efficiency. After in situ poling and curing process, the Tgs of the composites were elevated, and higher than that of the pristine poly(amide–imide) sample. Electro‐optical (EO) coefficients (r33) of about 5.5 ~ 18.0 pm/V at 830 nm were obtained. Excellent temporal stability at 100°C, and waveguide characteristics (3.1–4.2 dB/cm at 830 nm) were also obtained for these composites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

13.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

14.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

15.
2,5‐Bis‐(3,4‐dicarboxyphenylcarboxyethoxy)‐4′‐nitrostilbene dianhydride was prepared and reacted with 1,4‐phenylenediamine, 4,4′‐oxydianiline, 4,4′‐diaminobenzanilide, and 4,4′‐(hexafluoroisopropylidene)dianiline to yield unprecedented novel T‐type polyimides ( 4 – 7 ) containing 2,5‐dioxynitrostilbenyl groups as nonlinear optical chromophores, which constituted parts of the polymer backbones. 4 – 7 were soluble in polar solvents such as acetone and N,N‐dimethylformamide. They showed thermal stability up to 300 °C in thermogravimetric analysis thermograms; the glass‐transition temperatures obtained from differential scanning calorimetry thermograms were around 153 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064‐cm?1 fundamental wavelength were around 4.35 × 10?9 esu. The dipole alignment exhibited exceptionally high thermal stability even at 45 °C higher than the glass‐transition temperature, and there was no SHG decay below 200 °C because of the partial main‐chain character of the polymer structure, which was acceptable for nonlinear optical device applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3189–3199, 2004  相似文献   

16.
Four bis(ether anhydride)s, 4,4′‐(1,4‐phenylenedioxy)diphthalic anhydride (IV), 4,4′‐(2,5‐tolylenedioxy)‐diphthalic anhydride (Me‐IV), 4,4′‐(2‐chloro‐1,4‐phenylenedioxy)diphthalic anhydride (Cl‐IV), and 4,4′‐(2,5‐biphenylenedioxy)diphthalic anhydride (Ph‐IV), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 4‐nitrophthalonitrile with the potassium phenoxides of hydroquinone and various substituted hydroquinones such as methylhydroquinone, chlorohydroquinone, and phenylhydroquinone in N,N‐dimethylformamide, followed by alkaline hydrolysis and dehydration. Four series of poly(ether imide)s were prepared from bis(ether anhydride)s with various aromatic diamines by a classical two‐step procedure. The inherent viscosities of the intermediate poly(amic acid)s were in the range of 0.40–2.63 dL/g. Except for those derived from p‐phenylenediamine and benzidine, almost all the poly(amic acid)s could be solution‐cast and thermally converted into transparent, flexible, and tough polyimide films. Introduction of the chloro or phenyl substituent leads to a decreased crystallinity and an increased solubility of the polymers. The glass transition temperatures (Tg) of these polyimides were recorded in the range of 204–263°C. In general, the methyl‐ and chloro‐substituted polyimides exhibited relatively higher Tgs, whereas the phenyl‐substituted ones exhibited slightly lower Tgs compared to the corresponding nonsubstituted ones. Thermogravimetric analysis (TG) showed that 10% weight loss temperatures of all the polymers were above 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 665–675, 1999  相似文献   

17.
Two series of novel fluorinated aromatic polyamides were prepared from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic dicarboxylic acids with the phosphorylation polyamidation technique. These polyamides had inherent viscosities ranging from 0.51 to 1.54 dL/g that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 36,200–80,000 and 17,200–64,300, respectively. All polymers were highly soluble in aprotic polar solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some could even be dissolved in less‐polar solvents like tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 76–94 MPa and initial moduli of 1.70–2.22 GPa. Glass‐transition temperatures (Tg's) and softening temperatures of these polyamides were observed in the range of 185–268 °C by differential scanning calorimetry or thermomechanical analysis. Decomposition temperatures (Td's) for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. Almost all the fluorinated polyamides displayed relatively higher Tg and Td values than the corresponding nonfluorinated analogues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 420–431, 2003  相似文献   

18.
Two series of new organosoluble polyamides with methyl‐substituted triphenylamine (MeTPA) units showing anodically electrochromic characteristic were prepared from the phosphorylation polyamidation reaction of two diamine monomers, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 2 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ′), with various dicarboxylic acids, respectively. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with relatively high glass‐transition temperatures (Tg) (314–329 °C) and high char yields (higher than 62% at 800 °C in nitrogen). In addition, the polymer films showed reversible electrochemical oxidation, high coloration efficiency (CE), low switching time, and anodic green electrochromic behavior. The unexpected electrochemical behavior of higher oxidation potential and lower electrochemical stability of Me3TPA‐polyamides I than MeTPA corresponding polymers could be attributed to the higher steric hindrance of ortho‐substituents in Me3TPA moieties, thus made the resonance stabilization of cation radical much more difficult for the Me3‐substituted phenyl ring. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
Poly(styrene‐co‐ethyl acrylate) [P(St‐co‐EA)] with different ratios of St/EA was mixed with the small molecule 4,4′‐thio‐bis(6‐tert‐butyl‐m‐methyl phenol) (AO300) to investigate the influence of hydrogen bonding strength on the glass transition behavior. The glass transition temperature (Tg) linearly increased after adding AO300, and the slope value decreased with increased St/EA ratio. All lines could be extended to 62 °C, demonstrating that Tg of the small molecule in situ detected by the polymer chain was much higher than that by small molecule itself (29 °C). Fourier transform infrared spectroscopy analysis showed that the small molecules began to be self‐associated at a concentration where the hydrogen bonded carbonyl ratio of the bulk polymer was approximately 0.5 and irrespective of the St/EA ratio. Above the critical loading, the mixture's Tg negatively deviated from the linearly extended lines because of self‐association of the small molecules. The apparent Tg of AO300 was found to strongly depend on intermolecular hydrogen bonding number and strength. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 400–408  相似文献   

20.
As distinguished from the conventional preparation of poly(aryl ether ketone)s utilizing 4,4′‐difluorobenzophenone, a novel synthetic method of high molecular weight poly(phthalazinone ether ketone) derived from 4,4′‐dichlorobenzophenone was studied. Reaction conditions to get high molecular weight polymer were investigated in details. Experimentally, sulfolane was chosen as the reaction media and high molecular weight polymer could be obtained in 7–8 hr at 210°C. The cyclic oligomers in the polymer product reduced to below 3.0% when the concentration of the reactant is 1.6–1.7 g/ml. Fourier transform infrared (FT‐IR), 1H NMR, and elemental analysis were used to confirm the structure of the obtained polymer. The amorphous polymer showed reasonable solubility in selective solvent, such as chloroform and N‐methyl‐2‐pyrrolidone, and tough, flexible, and transparent thin film can be readily prepared from their N‐methyl‐2‐pyrrolidone solution. The obtained polymer showed high glass transition temperature (Tg) up to 261°C detected by differential scanning calorimetry (DSC), and the temperature of 5% weight loss under nitrogen higher than 500°C detected by thermal gravimetric analysis (TGA), indicating its excellent thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号