首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
If (W,S) is a Coxeter system, then an element of W is a reflection if it is conjugate to some element of S. To each Coxeter system there is an associated Coxeter diagram. A Coxeter system is called reflection preserving if every automorphism of W preserves reflections in this Coxeter system. As a direct application of our main theorem, we classify all reflection preserving even Coxeter systems. More generally, if (W,S) is an even Coxeter system, we give a combinatorial condition on the diagram for (W,S) that determines whether or not two even systems for W have the same set of reflections. If (W,S) is even and (W,S) is not even, then these systems do not have the same set of reflections. A Coxeter group is said to be reflection independent if any two Coxeter systems (W,S) and (W,S) have the same set of reflections. We classify all reflection independent even Coxeter groups.Mathematics Subject Classifications (2000). 20F05, 20F55, 20F65, 51F15.  相似文献   

2.
The principal objects studied in this note are infinite, non-affine Coxeter groups W. A well-known result of de la Harpe asserts that such groups have exponential growth. We study the growth type of quotients of W by parabolic subgroups and by a certain class of reflection subgroups. Our main result is that these quotients have exponential growth as well.  相似文献   

3.
A Coxeter system (W, S) is said to be of type K n if the associated Coxeter graph ΓS is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by ΓS. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type K n then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W).  相似文献   

4.
For a Coxeter group W, X a subset of W and a positive root, we define the negative orbit of under X to be {w · | w X} , where is the set of negative roots. Here we investigate the sizes of such sets as varies in the case when W is a finite Coxeter group and X is a conjugacy class of W.  相似文献   

5.
Let (W,S, ) be a Coxeter system: a Coxeter group W with S its distinguished generator set and its Coxeter graph. In the present paper, we always assume that the cardinality l=|S| ofS is finite. A Coxeter element of W is by definition a product of all generators s S in any fixed order. We use the notation C(W) to denote the set of all the Coxeter elements in W. These elements play an important role in the theory of Coxeter groups, e.g., the determination of polynomial invariants, the Poincaré polynomial, the Coxeter number and the group order of W (see [1–5] for example). They are also important in representation theory (see [6]). In the present paper, we show that the set C(W) is in one-to-one correspondence with the setC() of all acyclic orientations of . Then we use some graph-theoretic tricks to compute the cardinality c(W) of the setC(W) for any Coxeter group W. We deduce a recurrence formula for this number. Furthermore, we obtain some direct formulae of c(W) for a large family of Coxeter groups, which include all the finite, affine and hyperbolic Coxeter groups.The content of the paper is organized as below. In Section 1, we discuss some properties of Coxeter elements for simplifying the computation of the value c(W). In particular, we establish a bijection between the sets C(W) andC() . Then among the other results, we give a recurrence formula of c(W) in Section 2. Subsequently we deduce some closed formulae of c(W) for certain families of Coxeter groups in Section 3.  相似文献   

6.
In our recent paper (Douglass et al. (2011)), we claimed that both the group algebra of a finite Coxeter group W as well as the Orlik–Solomon algebra of W can be decomposed into a sum of induced one-dimensional representations of centralizers, one for each conjugacy class of elements of W, and gave a uniform proof of this claim for symmetric groups. In this note, we outline an inductive approach to our conjecture. As an application of this method, we prove the inductive version of the conjecture for finite Coxeter groups of rank up to 2.  相似文献   

7.
A solution of the isomorphism problem is presented for the class of Coxeter groups W that have a finite set of Coxeter generators S such that the underlying graph of the presentation diagram of the system (W,S) has the property that every cycle of length at least four has a chord. As an application, we construct counterexamples to two conjectures concerning the isomorphism problem for Coxeter groups.   相似文献   

8.
Koji Nuida 《代数通讯》2013,41(7):2559-2595
In this article, we prove that any irreducible Coxeter group of infinite order, which is possibly of infinite rank, is directly indecomposable as an abstract group. The key ingredient of the proof is that we can determine, for an irreducible Coxeter group W, the centralizers in W of the normal subgroups of W that are generated by involu-tions. As a consequence, the problem of deciding whether two general Coxeter groups are isomorphic is reduced to the case of irreducible ones. We also describe the automorphism group of a general Coxeter group in terms of those of its irreducible components.  相似文献   

9.
Xuhua He   《Journal of Algebra》2009,322(11):4030
Let (W,I) be a finite Coxeter group. In the case where W is a Weyl group, Berenstein and Kazhdan in [A. Berenstein, D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in: Quantum Groups, in: Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13–88] constructed a monoid structure on the set of all subsets of I using unipotent χ-linear bicrystals. In this paper, we will generalize this result to all types of finite Coxeter groups (including non-crystallographic types). Our approach is more elementary, based on some combinatorics of Coxeter groups. Moreover, we will calculate this monoid structure explicitly for each type.  相似文献   

10.
11.
Let W be a finite irreducible Coxeter group. The aim of this paper is to describe the maximal and minimal length elements in conjugacy classes of involutions in W.  相似文献   

12.
The purpose of this paper is twofold. First we aim to unify previous work by the first two authors, A. Garsia, and C. Reutenauer (see [2], [3], [4], [5] and [10]) on the structure of the descent algebras of the Coxeter groups of type A n and B n. But we shall also extend these results to the descent algebra of an arbitrary finite Coxeter group W. The descent algebra, introduced by Solomon in [14], is a subalgebra of the group algebra of W. It is closely related to the subring of the Burnside ring B(W) spanned by the permutation representations W/W J, where the W J are the parabolic subgroups of W. Specifically, our purpose is to lift a basis of primitive idempotents of the parabolic Burnside algebra to a basis of idempotents of the descent algebra.  相似文献   

13.
Rieuwert J. Blok 《代数通讯》2013,41(5):2254-2268
In 1974, Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group W together with ?2 by a variation on a semidirect product. We first settle an open problem, originally proposed by Petr Vojtěchovský in 2003, by finding a minimal presentation for the Chein loop with respect to a presentation for W. We then study these loops in the case where W is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. In particular, even if the Moufang loop is infinite, it is finitely presented. Viewing these presentations as amalgams of loops, we then apply methods due to Blok and Hoffman to describe a family of twisted Coxeter–Chein loops.  相似文献   

14.
Let V be Euclidean space. Let be a finite irreducible reflection group. Let be the corresponding Coxeter arrangement. Let S be the algebra of polynomial functions on V. For choose such that . The arrangement is known to be free: the derivation module is a free S-module with generators of degrees equal to the exponents of W. In this paper we prove an analogous theorem for the submodule of defined by . The degrees of the basis elements are all equal to the Coxeter number. The module may be considered a deformation of the derivation module for the Shi arrangement, which is conjectured to be free. The proof is by explicit construction using a derivation introduced by K. Saito in his theory of flat generators. Received: March 13, 1997  相似文献   

15.
Summary It is shown that the outer automorphism group of a Coxeter groupW of finite rank is finite if the Coxeter graph contains no infinite bonds. A key step in the proof is to show that if the group is irreducible andΠ 1 andΠ 2 any two bases of the root system ofW, thenΠ 2 = ±ωΠ 1 for some ω εW. The proof of this latter fact employs some properties of the dominance order on the root system introduced by Brink and Howlett. This article was processed by the author using the Springer-Verlag TEX PJour1g macro package 1991.  相似文献   

16.
Let W be a Coxeter group. We define an element w ε W to be fully commutative if any reduced expression for w can be obtained from any other by means of braid relations that only involve commuting generators. We give several combinatorial characterizations of this property, classify the Coxeter groups with finitely many fully commutative elements, and classify the parabolic quotients whose members are all fully commutative. As applications of the latter, we classify all parabolic quotients with the property that (1) the Bruhat ordering is a lattice, (2) the Bruhat ordering is a distributive lattice, (3) the weak ordering is a distributive lattice, and (4) the weak ordering and Bruhat ordering coincide. Partially supported by NSF Grants DMS-9057192 and DMS-9401575.  相似文献   

17.
18.
The connectivity at infinity of a finitely generated Coxeter group W is completely determined by topological properties of its nerve L (a finite simplicial complex). For example, W is simply connected at infinity if and only if L and the subcomplexes (where ranges over all simplices in L) are simply connected. This characterization extends to locally finite buildings. Received: May 3, 2001  相似文献   

19.
Let W be a finite Coxeter group, P a parabolic subgroup of W, and N W (P) the normalizer of P in W. We prove that every element in N W (P) is strongly real in N W (P), and that every irreducible complex character of N W (P) has Frobenius-Schur indicator 1.  相似文献   

20.
Twisted Bruhat orders are certain partial orders on a Coxeter system (W,S) associated to initial sections of reflection orders, which are certain subsets of the set of reflections T of a Coxeter system. We determine which subsets of T give rise to a partial order on W in the same way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号