共查询到20条相似文献,搜索用时 46 毫秒
1.
多柔体系统碰撞动力学研究综述 总被引:27,自引:3,他引:27
多柔体系统碰撞动力学研究具有重要的研究价值和工程实际意义,本文针对多柔体系统碰撞动力学研究中的几个基本问题进行了全面的分析和评述,其中包括多柔体系统动力学方程的描述、碰撞模型的建立、铰接间隙引起的碰撞问题、数值算法、实验研究、控制等几个方面,并根据目前的发展现状和研究中存在的问题,指出了今后多柔体系统动力学碰撞研究中的发展方向 相似文献
2.
柔性多体系统动力学实验研究综述 总被引:4,自引:0,他引:4
介绍了国内外柔性多体系统动力学实验研究现状,分为三个方面,即理论模型验证实验、动力学特性的实验研究和其它实验.柔性多体系统动力学建模理论的发展经历了3个阶段:运动-弹性动力学(KED)方法、传统混合坐标方法和计及了动力刚化效应的各种非线性理论.关于这些理论的模型验证实验均在本文中作了重点介绍.文中还对柔性多体系统动力学性态的研究实验也作了介绍,包括系统模态特性和共振等非线性力学行为.关于机械臂控制和碰撞研究实验虽有提及,但不作为重点.随后,着重介绍了柔性体弹性振动位移的测量和阻尼因素的处理这两个在实验不可避免但又难以解决的问题,尤其是结构阻尼和大范围运动引起的空气阻力.最后指出了今后的研究方向.文中对一些较为重要的实验装置也着重予以介绍,并给出了部分实验图片及数据曲线,以给读者一个更好的理解和参考. 相似文献
3.
接触碰撞行为作为大自然与多体系统中的常见现象,其接触力模型对于多体系统的碰撞行为机理研究与性能预测至关重要.静态弹塑性接触模型与考虑能量耗散的连续接触力模型是研究接触碰撞行为的两类不同方法,在多体系统碰撞动力学中存在诸多共性与差异.本文分别从上述两类接触模型的发展历程入手,详细介绍了两类模型的区别与联系.首先,根据阻尼项分母中是否含有初始碰撞速度将连续接触力模型分为黏性接触力模型与迟滞接触力模型,讨论了能量指数与Hertz接触刚度之间的关系,阐述了现有连续接触力模型在计算弹塑性材料接触碰撞行为时存在的问题.其次,着重介绍了分段连续的准静态弹塑性接触力模型(可连续从完全弹性转换到完全塑性接触阶段),分析了利用此类弹塑性接触力模型计算碰撞行为的技术特点.同时,以恢复系数为桥梁和借助线性化的弹塑性接触刚度,避免了Hertz刚度对弹塑性接触刚度的计算误差,根据碰撞前后多体系统的能量与动能守恒推导了弹塑性接触模型等效的迟滞阻尼因子.探索了连续接触力模型与准静态弹塑性接触力模型之间的内在联系,数值计算结果定量说明了人为阻尼项代表的能量耗散与弹塑性接触力模型中加卸载路径代表的能量耗散具有等效性.另外... 相似文献
4.
多刚体系统碰撞动力学方程及可解性判别准则 总被引:6,自引:0,他引:6
本文引入碰撞铰概念描述开环和闭环多刚体系统中各刚体间任意碰撞的情况,导出了适用于计算机编程求解的碰撞动力学方程,该方程适用于开环和闭环系统,文章对方程可能出现奇异的情况作了讨论,根据系统的碰撞结构导出了方程非奇异的必要和充分条件,文末以卫星帆板展开锁定过程作为算例。 相似文献
5.
平面柔性多体系统正碰撞动力学建模理论研究 总被引:2,自引:1,他引:2
针对目前柔性多体系统碰撞动力学建模方法存在的不足,对影响碰撞动力学仿真的主要因素如柔性体建模和碰撞初始条件进行分析,建立起基于变约束的柔性体碰撞动力学方程。首先,为了解决子结构法在处理碰撞界面搜索时面临的难题,引入多体系统柔性体有限元描述方法,推导出凸形柔性体接触点间法向位移约束的二阶导数形式。其次,从碰撞引起的接触界面速度不连续机理出发,结合连续介质力学间断面理论,给出碰撞瞬时由物体本身物理性质决定的接触位置处速度跳跃公式。最后对两弹性圆盘低速碰撞问题进行数值仿真。结果表明本文提出的改进方法符合力学基本原理,仿真结果满足收敛性要求。 相似文献
6.
7.
8.
柔性多体系统动力学研究现状与展望 总被引:4,自引:0,他引:4
对柔性多体系统动力学的研究现状进行了概括和总结,主要从柔性体建模方法、刚柔耦合动力学、接触碰撞问题、多物理场耦合、微分代数方程求解技术、控制方法、设计优化及软件开发和实验研究等几个研究方向进行总结,并对未来的研究方向做了展望. 相似文献
9.
树形多体系统非线性动力学的数值分析方法 总被引:4,自引:0,他引:4
研究了树形多体系统大线性动力学分析的数值方法,利用多体系统的正则方程及其线性化程,给出了多体系统Lyapunov指数和Poincare映射的计算方法,该算法具有较好的计算精度和通用性,既适用于说明该算法的有效性,并对该系统的动力学行为进行分析,最后用算例说明该算法的有效性,并对该系统的动力学特征(周期解、准周期解、分岔、混沌以及通往混沌的道路等)进行了分析。 相似文献
10.
11.
The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact. 相似文献
12.
13.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law. 相似文献
14.
The inverse dynamics problem for articulated structural systems such as robotic manipulators is the problem of the determination of the joint actuator forces and motor torques such that the system components follow specified motion trajectories. In many of the previous investigations, the open loop control law was established using an inverse dynamics procedure in which the centrifugal and Coriolis inertia forces are linearized such that these forces in the flexible model are the same as those in the rigid body model. In some other investigations, the effect of the nonlinear centrifugal and Coriolis forces is neglected in the analysis and control system design of articulated structural systems. It is the objective of this investigation to study the effect of the linearization of the centrifugal and Coriolis forces on the nonlinear dynamics of constrained flexible mechanical systems. The virtual work of the inertia forces is used to define the complete nonlinear centrifugal and Coriolis force model. This nonlinear model that depends on the rate of the finite rotation and the elastic deformation of the deformable bodies is used to obtain the solution of the inverse dynamics problem, thus defining the joint torques that produce the desired motion trajectories. The effect of the linearization of the mass matrix as well as the centrifugal and Coriolis forces on the obtained feedforward control law is examined numerically. The results presented in this investigation are obtained using a slider crank mechanism with a flexible connecting rod. 相似文献
15.
间隙元在钻柱瞬态动力学分析中的应用 总被引:7,自引:0,他引:7
为了描述钻柱与井壁的随机碰撞接触状态,本文构造了动力间隙元,并推导了动力间隙元的相对压缩量和迭代求解格式。把动力间隙元与梁单元相结合,采用Newmark直接积分法和冲量定理,进行了钻柱碰撞接触非线性瞬态动力学分析。经工程应用表明,构造的动力间隙元能够描述钻柱的碰撞接触状态,所设计的偏心防斜钻具已在大庆油田得到应用,取得了明显的经济和社会效益。 相似文献
16.
17.
附着于运动基上的弹性体的有限元动力学方程及其Neumann级数解法 总被引:1,自引:0,他引:1
采用运动参考系方法,根据Jourdain动力学普遍方程,导出了具有给定空间运动的弹性体的有限元动力学方程。提出了求解这类动力学方程数值解的Neumann级数-直接积分法。与经典算例的比较说明了所提出的方程和计算方法的正确性与优越性。 相似文献
18.
Finite elements with different orders can be used in the analysis of constrained deformable bodies that undergo large rigid body displacements. The constrained mode shapes resulting from the use of finite elements with different orders differ in the way the stiffness of the body bending and extension are defined. The constrained modes also depend on the selection of the boundary conditions. Using the same type of finite element, different sets of boundary conditions lead to different sets of constrained modes. In this investigation, the effect of the order of the element as well as the selection of the constrained mode shapes is examined numerically. To this end, the constant strain three node triangular element and the quadratic six node triangular element are used. The results obtained using the three node triangular element are compared with the higher order six node triangular element. The equations of motion for the three and six node triangular elements are formulated from assumed linear and quadratic displacement fields, respectively. Both assumed displacement fields can describe large rigid body translational and rotational displacements. Consequently, the dynamic formulation presented in this investigation can also be used in the large deformation analysis. Using the finite element displacement field, the mass, stiffness, and inertia invariants of the three and six-node triangular elements are formulated. Standard finite element assembly techniques are used to formulate the differential equations of motion for mechanical systems consisting of interconnected deformable bodies. Using a multibody four bar mechanism, numerical results of the different elements and their respective performance are presented. These results indicate that the three node triangular element does not perform well in bending modes of deformation. 相似文献
19.
J. P. Meijaard 《Nonlinear dynamics》1996,9(1-2):21-36
A spatial beam element for static and dynamic problems which involve large displacements and rotations is described. This beam element is applied to static linear buckling problems, the simulation of the motion of a slider-crank mechanism with a flexible connecting rod and a planar and spatial spin-up motion of a flexible beam. Results are compared with those from the open literature. 相似文献
20.
Significant trends in the vehicle industry are autonomous driving, micromobility, electrification and the increased use of shared mobility solutions. These new vehicle automation and mobility classes lead to a larger number of occupant positions, interiors and load directions. As safety systems interact with and protect occupants, it is essential to place the human, with its variability and vulnerability, at the center of the design and operation of these systems. Digital human body models (HBMs) can help meet these requirements and are therefore increasingly being integrated into the development of new vehicle models. This contribution provides an overview of current HBMs and their applications in vehicle safety in different driving modes. The authors briefly introduce the underlying mathematical methods and present a selection of HBMs to the reader. An overview table with guideline values for simulation times, common applications and available variants of the models is provided. To provide insight into the broad application of HBMs, the authors present three case studies in the field of vehicle safety: (i) in-crash finite element simulations and injuries of riders on a motorcycle; (ii) scenario-based assessment of the active pre-crash behavior of occupants with the Madymo multibody HBM; (iii) prediction of human behavior in a take-over scenario using the EMMA model. 相似文献