首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A family of new fluorescently labeled ligands, HRDATI, was prepared to develop transition-metal-based NO sensing strategies. The ligands are composed of aminotroponiminates (ATIs) with a dansyl fluorophore on one of the imine nitrogen atoms and an alkyl substituent, either i-Pr (8), t-Bu (9), or Bz (10), on the other. Bis(chelate) Co2+ ([Co(i-PrDATI)2] (12), [Co(t-BuDATI)2] (14), [Co(BzDATI)2] (15)) and Zn2+ ([Zn(i-PrDATI)2] (13)) complexes were prepared and characterized by X-ray crystallography. The bis(ATI) complex [Co(i-Pr2ATI)2] (11) was also prepared and its X-ray crystal structure determined. Cyclic voltammetry reveals reversible redox waves at -2.57 and -0.045 V (vs Cp2Fe/Cp2Fe+) in THF for the Co2+/Co+ and Co3+/Co2+ couples, respectively, of 11. Only a Co2+/Co+ wave at -2.09 V is observed for 12. When excited at 350 nm, the HRDATI ligands and the diamagnetic Zn2+ complex 13 fluoresce around 500 nm, whereas the paramagnetic Co2+ complexes quench the fluorescence. These air-stable cobalt compounds react with nitric oxide to dissociate a DATI ligand and form neutral dinitrosyl complexes, [Co(NO)2(RDATI)]. The release of the fluorophore-containing ligand is accompanied by an increase in fluorescence intensity, thus providing a strategy for fluorescent NO sensing. Linking two DATI moieties via a tetramethylene chain affords the ligand H2DATI-4 (18). The Co2+ complex [Co(DATI-4)] (19) reacts more readily with NO than the bis(DATI) compounds and also displays an increase in fluorescence intensity upon NO binding.  相似文献   

2.
The formation and stability of protonated diamines-carboxylic ligand complexes was studied potentiometrically (H(+)-glass electrode). Species formed are ALH(r) (A=cadaverine, putrescine, L=acetate, malate, tartrate, malonate, citrate, 1,2,3-propanetricarboxylate, 1,2,3,4-butanetetracarboxylate and glutamate; r=1...m+1, where m is the maximum degree of protonation of the carboxylic ligand), and their stability is a function of charges involved in the formation reaction. For the equilibrium H(i)A(i+)+H(j)L((j-z))=ALH((i+j-z))(i+j) the following linear relationships can be written: logK(1j)=-0.25+0.75 |j-z|, logK(2j)=0.50+0.90 |j-z| (by also considering some ethylenediamine and 1,2-diaminopropane complexes). Medium effects were considered. Comparison was made with analogous inorganic polyanion complexes. The simplest relationships -DeltaG(0)=6.5+/-0.3 and -DeltaG(0)=7.9+/-0.6 kJ mol(-1)n(-1) (n=number of possible salt bridges) were found for carboxylic and inorganic anions, respectively.  相似文献   

3.
The interaction of some open chain polyammonium cations with 1,2,4-benzenetricarboxylate was studied potentiometrically, at 25 degrees C. For all the investigated systems, the species ALHr(r-3) (r = 1,2 ... n + 2; n = number of aminogroups; A = amine; L = carboxylate) are formed. The stability of these complexes depends on charges in the polyammonium cation and in the carboxylic ligand, and for the reaction HiAi+ + HjL(j - 3) = ALHi + j(i + j - 3) we found a mean free energy contribution for salt bridge -delta G0 = 6.5 +/- 0.3 kJ mol-1 n-1 (n = number of possible salt bridges). The results of this investigation are compared with those of similar systems. By considering also the tricarboxylic ligands citrate and 1,2,3-propanetricarboxylate, we found for their complexes with polyammonium cations a fairly close stability. Calculations performed including complexes formed with these two ligands give -delta G0 = 6.6 +/- 0.4 kJ mol-1 n-1.  相似文献   

4.
Soares HM  Vasconcelos MT 《Talanta》1995,42(4):621-626
Potentiometric stripping analysis (PSA) was used for determination of conditional stability constants (delta') of copper(II) complexes. Glycine was used as a model of a non-adsorbable ligand on the mercury electrode that forms well defined 1:1 and 1:2 copper(II)-glycine complexes, which are labile within the time scale of the analytical technique. The calculations were performed by the DeFord-Hume method, which was applied to the shifts in peak potential (dt/dE vs. E) provoked by the presence of different concentration of the ligand in the metal solution. For comparison purposes, the study was also carried out by differential pulse anodic stripping voltammetry (DPASV). The results obtained by PSA both at pH 6.0, logbeta'(1) = 5.0 +/- 0.2 and logbeta'(2) = 7.6 + 0.2, and at pH 6.5, logbeta'(1) = 5.7 +/- 0.6 and logbeta'(2) = 8.5 +/- 0.4 (standard deviations are given), were in agreement with those obtained by DPASV and from the literature, which indicates that PSA is suitable for this type of study.  相似文献   

5.
The ligand substitution reaction of [Co(an)6]2+ (an = acetonitrile) with 1,1,3,3-tetramethylurea (TMU) in the noncoordinating solvent, nitromethane, was spectrophotometrically investigated by titration. The observed spectral changes were analyzed using a model with the four steps of ligand substitution. The component complexes involved in the substitution were found to be 6-coordinate [Co(an)6]2+ and [Co(an)5(tmu)]2+, 5-coordinate [Co(an)3(tmu)2]2+ and [Co(an)2(tmu)3]2+, and 4-coordinate [Co(tmu)4]2+. The logarithmic values of the stepwise equilibrium constant are 2.17 +/- 0.26, 1.06 +/- 0.15, 1.19 +/- 0.06, and -0.4 +/- 0.4 at 25 degrees C. The decrease in the coordination number of the Co(II) ion from 6 to 5 during the formation of [Co(an)3(tmu)2]2+ and from 5 to 4 during the formation of [Co(tmu)4]2+ is ascribed to the steric repulsion between the coordinating bulky TMU molecules.  相似文献   

6.
4,4'-Bis(N-tert-butyloxylamino)-2,2'-bipyridine (4) and its 1:1 complexes with bis(hexafluoroacetylacetonato)manganese(II), -copper(II), and -zinc(II) were prepared. An X-ray structure analysis of free ligand 4 reveals that the molecule has a trans conformation with Ci symmetry and the aminoxyl radical center has a short contact of 2.36 A with one of the neighboring molecules. The three 1:1 complexes have mutually similar molecular structures in which the 2,2'-bipyridine moiety has a cis conformation and serves as a bidentate ligand and coordination geometry around the metal atom is a distorted octahedron. The EPR experiments for free ligand 4 and [Zn(hfac)2.4] in frozen solution suggested that the exchange couplings between the two aminoxyls (R) through the 2,2'-bipyridine rings are antiferromagnetic with JR-R/kB = -19.3 +/- 0.5 and -24.3 +/- 0.4 K, respectively. Isosceles triangular three-spin models were applied to the 1:1 magnetic metal complexes to give JR-M/kB = -19.1 +/- 0.2 K and JR-R/kB = -32.9 +/- 0.3 K for [Mn(hfac)2.4] and JR-M/kB = +73 +/- 18 K and JR-R/kB = -24.5 +/- 6.5 K for [Cu(hfac)2.4].  相似文献   

7.
The reactions of Cd2+ and Zn2+ with the pyridine-arm isoindoline ligand 4'-MeLH = 1,3-bis[2-(4-methylpyridyl)imino]isoindoline produced the series of octahedrally coordinated complexes M(4'-MeL)2, [M(4'-MeLH)2]2+, and [M(4'-MeL)(4'-MeLH)]+. The complexes M(4'-MeL)2 resulted from reactions of the respective metal perchlorates with deprotonated ligand, whereas the complexes [M(4'-MeLH)2](ClO4)2 resulted from reactions with ligand in the absence of added base. The mixed-ligand complexes [M(4'-MeL)(4'-MeLH)]+ were generated in solution by reactions of equimolar quantities of M(4'-MeL)2 and [M(4'-MeLH)2]2+. Whereas [Cd(4'-MeL)(4'-MeLH)]+ is stable in solution, [Zn(4'-MeL)(4'-MeLH)]+ converts to and establishes equilibrium with the tetrahedrally coordinated, trinuclear complex [Zn3(4'-MeL)4]2+. The complexes Cd(4'-MeL)2 (1), Zn(4'-MeL)2 (2), and [Cd(4'-MeL)(4'-MeLH)]ClO4 (5) were characterized by single-crystal X-ray diffraction, with the latter complex being shown to contain 4'-MeLH coordinated as a protonated iminium zwitterionic ligand. The [M(4'-MeLH)2]2+ and [M(4'-MeL)(4'-MeLH)]+ complexes are tautomeric in solution because of the shuttling of the iminium protons between imine N atoms. The rate of prototropic tautomerism in [Cd(4'-MeLH)2]+ was followed by 1H NMR spectroscopy. Over the temperature range 276-312 K, a linear Eyring plot with the activation parameters DeltaG++ = 16.0 +/- 0.1 kcal/mol, DeltaH++ = 2.9 +/- 0.1 kcal/mol, and DeltaS++ = -44.0 +/- 0.3 cal/mol.K was obtained.  相似文献   

8.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

9.
The solution chemistry of uranyl ion with iminodiacetate (IDA) and oxydiacetate (ODA) was investigated using NMR and EXAFS spectroscopies, potentiometry, and calorimetry. From the NMR and EXAFS data and depending on stoichiometry and pH, three types of metal:ligand complex were identified in solution in the pH range 3-7: 1:1 and 1:2 monomers; a 2:2 dimer. From NMR and EXAFS data for the IDA system and previous studies, we propose the three complex types are [UO(2)(IDA)(H(2)O)(2)], [UO(2)(IDA)(2)](2)(-), and [(UO(2))(2)(IDA)(2)(mu-OH)(2)](2)(-). From EXAFS spectroscopy, similar 1:1, 2:2, and 1:2 complexes are found for the ODA system, although (13)C NMR spectroscopy was not a useful probe in this system. For the 1:1 and 1:2 complexes in solution, EXAFS spectroscopy is ambiguous because the data can be fitted with either a long U-N/O(ether) value (ca. 2.9 A) suggesting 1,7-coordination of the ligand or a U-C interaction at a similar distance, consistent with terminal bidentate coordination. However, the NMR data of the IDA system suggest that 1,7-coordination is the more likely. The stability constants of the three complexes were determined by potentiometric titrations; the log beta values are 9.90 +/-, 16.42 +/-, and 10.80 +/- for the 1:1, 1:2, and 2:2 uranyl-IDA complexes, respectively, and 5.77 +/-, 7.84 +/-, and 4.29 +/- for the 1:1, 1:2, and 2:2 uranyl-ODA complexes, respectively. The thermodynamic constants for the complexes were calculated from calorimetric titrations; the enthalpy changes (kJ mol(-)(1)) and entropy changes (J K(-)(1) mol(-)(1)) of complexation for the 1:1, 1:2, and 2:2 complexes respectively are the following. IDA: 12 +/- 2, 230 +/- 8; 8 +/- 2, 151 +/- 9; -33 +/- 3, -283 +/- 11. ODA: 26 +/- 2, 198 +/- 12; 20 +/- 2, 106 +/- 8; -24 +/- 2; -219 +/- 8.  相似文献   

10.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

11.
Napoli A 《Talanta》1968,15(2):189-198
A potentiometric and spectrophotometric investigation on the formation of aluminium(III) complexes with dipicolinic (2,6-pyridinedicarboxylic) acid at 25 degrees in aqueous 0.5M NaClO(4) medium is reported. The values of the cumulative formation constants of the two acid species HL(-) and H(2)L are log ss(1) = 4.532 +/- 0.004 and log ss(2) = 6.624 +/- 0.006. At pH < 4 and in the investigated concentration range (0.242 C(m) 0.975 mM,3.16 C(l) 5.27 mM), aluminium(III) forms two mononuclear complexes, one positively charged, with a metal/ligand molar ratio of 1:1, and the other negatively charged, with a metal/ligand molar ratio of 1:2. The two methods of investigation have yielded the following values for the cumulative formation constants: log beta(1(pot)) = 4.87 +/- 0.02; log beta(2(pot)) = 8.32 +/- 0.02 log beta(1(sp)) = 4.85 +/- 0.03. A precipitate occurs at pH 5-6. A paper electrophoretic investigation and comparison with the behaviour of the well-known iron(III) complexes, supports these findings.  相似文献   

12.
A careful reinvestigation by high-field 19F NMR (470 MHz) spectroscopy has been made of the Al3+/F- system in aqueous solution under carefully controlled conditions of pH, concentration, ionic strength (I), and temperature. The 19F NMR spectra show five distinct signals at 278 K and I = 0.6 M (TMACl) which have been attributed to the complexes AlFi(3-i)+(aq) with i < or = 5. There was no need to invoke AlFi(OH)j(3-i-j)+ mixed complexes in the model under our experimental conditions (pH < or = 6.5), nor was any evidence obtained for the formation of AlF6(3-)(aq) at very high ratios of F-/Al3+. The stepwise equilibrium constants obtained for the complexes by integration of the 19F signals are in good agreement with literature data given the differences in medium and temperature. In I = 0.6 M TMACl at 278 K and in I = 3 M KCl at 298 K the log Ki values are 6.42, 5.41, 3.99, 2.50, and 0.84 (for species i = 1-5) and 6.35, 5.25, and 4.11 (for species i = 1-3), respectively. Disappearance of the 19F NMR signals under certain conditions was shown to be due to precipitation. Certain 19F NMR signals exhibit temperature- and concentration-dependent exchange broadening. Detailed line shape analysis of the spectra and magnetization transfer measurements indicate that the kinetics are dominated by F- exchange rather than complex formation. The detected reactions and their rate constants are AlF2(2+) + *F- reversible AlF*F2+ + F- (k02 = (1.8 +/- 0.3) x 10(6) M-1 s-1), AlF3(0) + *F- reversible AlF2*F0 + F- (k03 = (3.9 +/- 0.9) x 10(6) M-1 s-1), and AlF3(0) + H*F reversible AlF2*F0 + HF (kH03 = (6.6 +/- 0.5) x 10(4) M-1 s-1). The rates of these exchange reactions increase markedly with increasing F- substitution. Thus, the reactions of AlF2+(aq) were too inert to be detected even on the T1 NMR time scale, while some of the reactions of AlF3(0)(aq) were fast, causing large line broadening. The ligand exchange appears to follow an associative interchange mechanism. The cis-trans isomerization of AlF2+(aq), consistent with octahedral geometry for that complex, is slowed sufficiently to be observed at temperatures around 270 K. Difference between the Al3+/F- system and the much studied Al3+/OH- system are briefly commented on.  相似文献   

13.
PhenHDO3A is a ditopic ligand featuring a tetraazacyclododecane unit substituted by three acetate arms and one 6-hydroxy-5,6-dihydro-1,10-phenanthroline group (PhenHDO3A = rel-10-[(5R,6R)-5,6-dihydro-6-hydroxy-1,10-phenantholin-5-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid). This ligand was specially designed so as to obtain highly stable heteropolymetallic assemblies. PhenHDO3A has been prepared starting from phenanthroline epoxide and either a triprotected tetraazacyclododecane or tert-butyl triester of N,N',N' '-tetraazacyclododecane-triacetic acid. The latter yields PhenHDO3A in a single step. PhenHDO3A forms kinetically stable lanthanide complexes (acid-catalyzed kinetic constant kH = (1.2 +/- 0.2) x 10(-3) s(-1) M(-1)) whose solution structure has been deduced from a quantitative analysis of the paramagnetic shifts and the longitudinal relaxation times of the proton nuclei of YbPhenHDO3A. The alcohol group of the dihydro-phenanthroline unit remains coordinated to the encapsulated metal ion despite the steric crowding brought about by this group. Furthermore, the complexes are monohydrated, as shown by luminescence lifetime measurements on EuPhenHDO3A solutions. Relaxivity titrations at 20 MHz clearly indicate that the phenanthroline unit of GdPhenHDO3A is available for the spontaneous formation of highly stable tris complexes with the Fe2+ and Ni2+ ions. The water-exchange times and the rotational correlation times of GdPhenHDO3A and Fe(GdPhenHDO3A)32+ have been deduced from variable temperature 17O NMR studies and from nuclear relaxation dispersion curves. Despite rather slow water-exchange rates (taum0 = 1.0-1.2 x 10(-6) s), relaxivity gains of 90% have been observed upon the formation of the heterometallic tris complexes. The latter rotate about four times more slowly (taur0= 398 ps) than the monomeric unit (taur0 = 105 ps) and their relaxivity is, accordingly, twice as high. The relaxivity of the tris complexes between 10 and 50 MHz is comparable to relaxivities reported for Gd3+-containing dendrimers of much higher molecular weights. The high relaxivity of the tris-PhenHDO3A lanthanide complexes is attributed to their internal rigidity.  相似文献   

14.
Attachment of a proton sponge to a phosphine ligand renders neutral complexes of the ligand highly amenable to analysis by electrospray ionisation mass spectrometry (ESI-MS). The ligand 1,8-bis(dimethylamino)naphthyldiphenylphosphine (3) is extremely efficient and highly selective in forming exclusively [M + H]+ ions, which may be detected at very low concentration. Ionisation efficiency of 3 in the presence of H+ approached 100%. The bis-substituted ligand bis{1,8-bis(dimethylamino)naphthyl}phenylphosphine (4) was also prepared and characterised, as were Fe(CO)4- (5c), Mn(eta5-C5H4Me)(CO)2- (6) and W(CO)5- (7) complexes of 3. Compounds 3, 3.HBr.EtOH, 4 and 5c were all structurally characterised.  相似文献   

15.
The synthetic, structural, spectroscopic and analytical properties of steric hindered Schiff-base ligand [N-(3,5-di-tert-butylsalicylaldimine)-1-(2-Aminoethyl) piperazine (HL)] and its mononuclear Cu(II), Co(II) and Ni(II) complexes are described. The new unsymmetric steric hindered Schiff base ligand containing a donor set of NONO was prepared by the reaction of 1-(2-Aminoethyl) piperazine with 3,5-di-tert-butylsalicylaldehyde. Certain metal complexes of this ligand were synthesized by treating an ethanolic solution of the ligand with an equimolar amount of metal salts. The ligand and its metal complexes were characterized by FT-IR, UV-Vis, 1H NMR, elemental analysis, molar conductivity and magnetic susceptibility techniques. The reaction of this ligand in a 1:2 mole ratio with metal acetate afforded mononuclear metal complexes. The molar conductivity (??M) values of the metal complexes of Ni(II), Co(II) and Cu(II) were in the range of 6.4 to 9.8 ???1 cm2 mol?1 at room temperature. Preconcentration and separation of Cu2+ from aqueous solution using N-(3,5-di-tert-butylsalicylaldimine)-1-(2-Aminoethyl) piperazine (HL) as a new extractant were studied. The extraction experiments were carried out at various pHs. While Cu2+ showed the highest extractability and selectivity at pH 7.0, extractions of Co2+ and Ni2+ were unsuccessful due to precipitate formation.  相似文献   

16.
Because of our interest in evaluating a possible relationship between complex dynamics and water exchange reactivity, we performed (1)H NMR studies on the paramagnetic aminopolycarboxylate complexes Fe (II)-TMDTA and Fe (II)-CyDTA and their diamagnetic analogues Zn (II)-TMDTA and Zn (II)-CyDTA. Whereas a fast Delta-Lambda isomerization was observed for the TMDTA species, no acetate scrambling between in-plane and out-of-plane positions is accessible for any of the CyDTA complexes because the rigid ligand backbone prevents any configurational changes in the chelate system. In variable-temperature (1)H NMR studies, no evidence of spectral coalescence due to nitrogen inversion was found for any of the complexes in the available temperature range. The TMDTA complexes exhibit the known solution behavior of EDTA, whereas the CyDTA complexes adopt static solution structures. Comparing the exchange kinetics of flexible EDTA-type complexes and static CyDTA complexes appears to be a suitable method for evaluating the effect of ligand dynamics on the overall reactivity. In order to assess information concerning the rates and mechanism of water exchange, we performed variable-temperature and -pressure (17)O NMR studies of Ni (II)-CyDTA, Fe (II)-CyDTA, and Mn (II)-CyDTA. For Ni (II)-CyDTA, no significant effects on line widths or chemical shifts were apparent, indicating either the absence of any chemical exchange or the existence of a very small amount of the water-coordinated complex in solution. For [Fe (II)(CyDTA)(H 2O)] (2-) and [Mn (II)(CyDTA)(H 2O)] (2-), exchange rate constant values of (1.1 +/- 0.3) x 10 (6) and (1.4 +/- 0.2) x 10 (8) s (-1), respectively, at 298 K were determined from fits to resonance-shift and line-broadening data. A relationship between chelate dynamics and reactivity seems to be operative, since the CyDTA complexes exhibited significantly slower reactions than their EDTA counterparts. The variable-pressure (17)O NMR measurements for [Mn (II)(CyDTA)(H 2O)] (2-) yielded an activation volume of +9.4 +/- 0.9 cm (3) mol (-1). The mechanism is reliably assigned as a dissociative interchange (I d) mechanism with a pronounced dissociation of the leaving water molecule in the transition state. In the case of [Fe (II)(CyDTA)(H 2O)] (2-), no suitable experimental conditions for variable-pressure measurements were accessible.  相似文献   

17.
The Cu(II)- and Co(II)-binding properties of two peptides, designed on the basis of the active site sequence and structure of the blue copper protein plastocyanin, are explored. Peptide BCP-A, Ac-Trp-(Gly)(3)-Ser-Tyr-Cys-Ser-Pro-His-Gln-Gly-Ala-Gly-Met-(Gly )(3)-His-(Gly)(2)-Lys-CONH(2), conserves the Cu-binding loop of plastocyanin containing three of the four copper ligands and has a flexible (Gly)(3) linker to the second His ligand. Peptide BCP-B, Ac-Trp-(Gly)(3)-Cys-Gly-His-Gly-Val-Pro-Ser-His-Gly-Met-Gly-CONH(2), contains all four blue copper ligands, with two on either side of a beta-turn. Both peptides form 1:1 complexes with Cu(II) through His and Cys ligands. BCP-A, the ligand loop, binds to Cu(II) in a tetrahedrally distorted square plane with axial solvent ligation, while BCP-B-Cu(II) has no tetrahedral distortion in aqueous solution. In methanolic solution, distortion of the square plane is evident for both BCP-Cu(II) complexes. Tetrahedral Co(II) complexes are observed for both peptides in aqueous solution but with 4:2 peptide:Co(II) stoichiometries as estimated by ultracentrifugation. Cu(II) reduction potentials for the aqueous peptide-Cu(II) complexes were measured to be +75 +/- 30 mV vs NHE for BCP-A-Cu(II) and -10 +/- 20 mV vs NHE for BCP-B-Cu(II). The results indicate that the plastocyanin ligand loop can act as a metal-binding site with His and Cys ligands in the absence of the remainder of the folded protein but, by itself, cannot stabilize a type 1 copper site, emphasizing the role of the protein matrix in protecting the Cu binding site from solvent exposure and the Cys from oxidation.  相似文献   

18.
The chemical speciation of Mn2+ within cells is critical for its transport, availability, and redox properties. Herein we investigate the redox behavior and complexation equilibria of Mn2+ in aqueous solutions of bicarbonate by voltammetry and electron paramagnetic resonance (EPR) spectroscopy and discuss the implications for the uptake of Mn2+ by mangano-cluster enzymes such as photosystem II (PSII). Both the electrochemical reduction of Mn2+ to Mn0 at an Hg electrode and EPR (in the absence of a polarizing electrode) revealed the formation of 1:1 and 1:2 Mn-(bi)carbonate complexes as a function of Mn2+ and bicarbonate concentrations. Pulsed EPR spectroscopy, including ENDOR, ESEEM, and 2D-HYSCORE, were used to probe the hyperfine couplings to 1H and 13C nuclei of the ligand(s) bound to Mn2+. For the 1:2 complex, the complete 13C hyperfine tensor for one of the (bi)carbonate ligands was determined and it was established that this ligand coordinates to Mn2+ in bidentate mode with a 13C-Mn distance of 2.85 +/- 0.1 angstroms. The second (bi)carbonate ligand in the 1:2 complex coordinates possibly in monodentate mode, which is structurally less defined, and its 13C signal is broad and unobservable. 1H ENDOR reveals that 1-2 water ligands are lost upon binding of one bicarbonate ion in the 1:1 complex while 3-4 water ligands are lost upon forming the 1:2 complex. Thus, we deduce that the dominant species above 0.1 M bicarbonate concentration is the 1:2 complex, [Mn(CO3)(HCO3)(OH2)3]-.  相似文献   

19.
The kinetics and mechanism of siderophore ligand dissociation from their fully chelated Fe(III) complexes is described for the highly preorganized cyclic tetradentate alcaligin and random linear tetradentate rhodotorulic acid in aqueous solution at 25 degrees C (Fe2L3 + 6H+ reversible 2 Fe3+ aq + 3 H2L). At siderophore:Fe(III) ratios where Fe(III) is hexacoordinated, kinetic data for the H(+)-driven ligand dissociation from the Fe2L3 species is consistent with a singly ligand bridged structure for both the alcaligin and rhodotorulic acid complexes. Proton-driven ligand dissociation is found to proceed via parallel reaction paths for rhodotorulic acid, in contrast with the single path previously observed for the linear trihydroxamate siderophore ferrioxamine B. Parallel paths are also available for ligand dissociation from Fe2(alcaligin)3, although the efficiency of one path is greatly diminished and dissociation of the bis coordinated complex Fe(alcaligin)(OH2)2+ is extremely slow (k = 10(-5) M-1 s-1) due to the high degree of preorganization in the alcaligin siderophore. Mechanistic interpretations were further confirmed by investigating the kinetics of ligand dissociation from the ternary complexes Fe(alcaligin)(L) in aqueous acid where L = N-methylacetohydroxamic acid and glycine hydroxamic acid. The existence of multiple ligand dissociation paths is discussed in the context of siderophore mediated microbial iron transport.  相似文献   

20.
Ismail MI 《Talanta》1992,39(9):1107-1111
Differential pulse polarography was used to study the mixed ligand complexes of imidazole and some dicarboxylate anions namely, oxalate, tartrate and malonate with Cd(II) at constant ionic strength (mu = 1, NaNO(3)) at 25 +/- 0.1 degrees . It has been found that the reduction of complexes is reversible and diffusion-controlled. Three mixed complexes are formed with malonate (or oxalate) whereas four mixed complexes are formed with tartrate. The overall stability constants for each system were calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号