首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary: Poly[3-(4-octylphenyl) thiophene] (POPT) and poly[3-(4-octylphenoxy) thiophene] (POPOT) with high head-to-tail regioregularities have been synthesised and photovoltaic properties have been investigated. POPT-blend-PCBM exhibits an interesting behaviour in bulk heterojunction whereas POPOT presents poor photovoltaic performances. UV-visible absorption and AFM images of the blends are presented to explain these results.  相似文献   

2.
Three new side‐chain conjugated polythiophene derivatives, poly{3‐[2‐(3‐methoxy‐4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3MOPVT), poly{3‐[2‐(3,5‐dimethoxy‐4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3DMOPVT), and poly{3‐[2‐(3,4‐dioctyloxy‐phenyl)‐vinyl]‐thiophene} (P3DOPVT), were synthesized by Wittig‐Hornor reaction and GRIM method and compared with poly{3‐[2‐(4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3OPVT) for investigating the effect of the end groups of the conjugated side‐chain on the properties of the polymers. Owing to the electron‐donating ability of methoxy groups, the visible absorption peaks of P3MOPVT and P3DMOPVT solutions and films become stronger and red‐shifted compared with P3OPVT. The electrochemical bandgaps of the four polymers are 2.15 eV for P3OPVT, 1.99 eV for P3MOPVT, 1.85 eV for P3DMOPVT, and 2.36 eV for P3DOPVT, respectively, which indicate that the electron‐donating ability of the methoxy end group on the conjugated side chain of P3MOPVT and P3DMOPVT and the large steric hindrance of the two octyloxy end groups on the conjugated side chain of P3DOPVT have obvious influence on the electrochemical properties of the side‐chain conjugated polythiophenes. Polymer solar cells were fabricated with a structure of ITO/PEDOT:PSS/Polymer:PCBM/LiF/Al. The best device, based on P3DMOPVT, shows a power conversion efficiency of 1.63% under the illumination of AM1.5, 80 mW/cm2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4916–4922, 2006  相似文献   

3.
Two soluble side‐chain conjugated polythiophenes, poly{3‐[2‐(4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3OPVT) and poly{3‐(4‐octyloxy‐phenylethynyl)‐thiophene} (P3OPET) have been synthesized successfully. In P3OPVT and P3OPET, substituted benzene rings are connected with the polythiophene backbone through trans carbon–carbon double bond and carbon–carbon triple bond, respectively. Absorption spectra of the P3OPVT and P3OPET both show two absorption peaks located in UV and visible region, respectively. The results of optical and electrochemical measurements indicate that the conjugated side‐chains can reduce the bandgap effectively. This type of side‐chain conjugated polythiophenes may be promising for the applications in polymer photovoltaic cells and field effect transistors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2206–2214, 2006  相似文献   

4.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

5.
Among the numerous reduced bandgap polymers currently being developed, poly[3‐(4‐octylphenyl)thiophene)]s (POPT) may present attractive properties for organic solar cells due to its facile preparation and improved absorption with respect to poly(3‐hexylthiophene). This article appraises methods of preparation, including the use of diphenyl ether as a reaction medium, and discusses the effects of variations in molar masses, from about 3200 to 65,000 g mol?1 and regioregularity on its optoelectronic properties. The photovoltaic properties of POPT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) in bulk heterojunction devices are also discussed in the light of morphological variations, as indicated by atomic force microscopy characterizations. With an initial screening of conditions, namely POPT:PCBM ratios and deposition solvent, a power conversion efficiency of 1.58% was obtained using a relatively high molar mass POPT sample. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Using full atomistic classical molecular dynamics simulations, the interfacial properties of free-standing poly(3-hexylthiophene) (P3HT) films have been investigated. The orientations of different parts of the P3HT chain and the surface tensions of the films were calculated in a temperature range of 540 K-600 K. At the liquid/vacuum interface, the P3HT chain shows ordering by exposing hexyl groups at the interface, while the chain backbone lays flat with the thiophene ring preferentially tilt toward the surface. At the interface, the terminal methyl groups of hexyl side chains are in excess compared to the methylene groups or thiophene rings. The surface tension of P3HT in its melt state shows similar temperature dependence to that of polymers that have long alkyl side chains. The surface tension values are comparable to those polymers that expose methyl or methylene groups on the surface. The surface tension values determined for the melt state are lower than the experimental reported values for crystalline P3HT films, as expected.  相似文献   

7.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

8.
2,7‐dibromo‐N‐hexylcarbazole is successfully synthesized in three steps with an overall 37% yield. Novel 2,7‐carbazole‐based sterically hindered conjugated polymers are further synthesized. In the backbone structure of polymer P1 , alkylated bithiophene moiety is β‐substituted with dodecyl chains on both thiophene rings, adopting the tail‐to‐tail configuration. While for polymers P2 and P3 , partially planarized thieno[3,2‐b]thiophene moiety ( P2 ) and β‐pentyl substituted thieno[3,2‐b]thiophene ( P3 ) are incorporated. All polymers demonstrate efficient blue‐to‐green light emission, good thermal stability (Td ≥ 379 °C), and high glass transition temperatures (Tg = 118 °C). The optical and electronic properties of the resulted polymers are tuned by the incorporated alkyl chains. For instance, the incorporation of β‐pentyl group in thieno[3,2‐b]thiophene moiety endows P3 with blue‐shifted photophysical spectra, reduced fluorescence quantum yield and larger band gap in comparison with P2 . The steric effect of incorporated alkyl chains is further illustrated by geometry optimization of three model oligomers (analogues to the repetition units of P1–P3 ) using density functional theory. Sterically hindered polymers P1 and P2 exhibit high charge transport ability and moderate electroluminescent properties in primarily tested single‐layer light‐emitting diodes (configuration: ITO/PEDOT:PSS/Polymer/Ca/Ag). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7725–7738, 2008  相似文献   

9.
Identifying structure formation in semicrystalline conjugated polymers is the fundamental basis to understand electronic processes in these materials. Although correlations between physical properties, structure formation, and device parameters of regioregular, semicrystalline poly(3-hexylthiophene) (P3HT) have been established, it has remained difficult to disentangle the influence of regioregularity, polydispersity, and molecular weight. Here we show that the most commonly used synthetic protocol for the synthesis of P3HT, the living Kumada catalyst transfer polycondensation (KCTP) with Ni(dppp)Cl(2) as the catalyst, leads to regioregular chains with one single tail-to-tail (TT) defect distributed over the whole chain, in contrast to the hitherto assumed exclusive location at the chain end. NMR end-group analysis and simulations are used to quantify this effect. A series of entirely defect-free P3HT materials with different molecular weights is synthesized via new, soluble nickel initiators. Data on structure formation in defect-free P3HT, as elucidated by various calorimetric and scattering experiments, allow the development of a simple model for estimating the degree of crystallinity. We find very good agreement for predicted and experimentally determined degrees of crystallinities as high as ~70%. For Ni(dppp)Cl(2)-initiated chains comprising one distributed TT unit, the comparison of simulated crystallinities with calorimetric and optical measurements strongly suggests incorporation of the TT unit into the crystal lattice, which is accompanied by an increase in backbone torsion. Polydispersity is identified as a major parameter determining crystallinity within the molecular weight range investigated. We believe that the presented approach and results not only contribute to understanding structure formation in P3HT but are generally applicable to other semicrystalline conjugated polymers as well.  相似文献   

10.
Heavy atom substitution in chalcogenophenes is a versatile strategy for tailoring and ultimately improving conjugated polymer properties. While thiophene monomers are commonly implemented in polymer designs, relatively little is known regarding the molecular properties of the heavier chalcogenophenes. Herein, we use density functional theory (DFT) calculations to examine how group 16 heteroatoms, including the radioactive polonium, affect polychalcogenophene properties including bond length, chain twisting, aromaticity, and optical properties. Heavier chalcogenophenes are more quinoidal in character and consequently have reduced band gaps and larger degrees of planarity. We consider both the neutral and radical cationic species. Upon p-type doping, bond length rearrangement is indicative of a more delocalized electronic structure, which combined with optical calculations is consistent with the polaron-model of charge storage on conjugated polymer chains. A better understanding of the properties of these materials at their molecular levels will inevitably be useful in material design as the polymer community continues to explore more main group containing polymers to tackle issues in electronic devices.  相似文献   

11.
Three of conjugated polymers based on pyromellitic diimide (PMDI) as the acceptor unit and thienothiophene (TT) as the donor unit were successfully synthesized by Stille coupling. The effect of the side chain length and thiophene π‐bridge on the polymers' optical and electrochemical properties was investigated. Electrochemical characterization indicated that these polymers have deep highest occupied molecular orbital energy levels between ?5.7 and ?5.8 eV. Polymer solar cells were fabricated by using these PMDI‐based polymers as the donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the acceptor. The polymer P1 whose PMDI unit was functionalized with 2‐ethylhexyl side chain shows the higher short‐circuit current (Jsc) and fill factor (FF) compared with that of P2 with a 2‐octyldodecyl side chain on the PMDI unit. The results also illustrate that the insertion of a thiophene π‐bridge between PMDI and TT (the polymer P3) leads to the broader absorption and better photovoltaic performance. The best performance was obtained from the cell based on the polymer P3 with a power conversion efficiency of 0.43% under the illumination of AM 1.5 G, 100 mW/cm2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1193–1202  相似文献   

13.
Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2'-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.  相似文献   

14.
This article reports the synthesis and characterization of a new polythiophene derivative phenoxy‐substituted, the poly[3‐(4‐octylphenoxy)thiophene] (POPOT). The oxidative polymerization was found to yield low molecular weight material, whereas a modified Grignard metathesis (GRIM) yielded polymers of high molecular weights. One‐ and two‐dimensional NMR indicated the latter to be highly regioregular. POPOTs exhibited higher thermal stabilities than equivalent alkoxy‐substituted polythiophenes and exhibited red shifts in the absorption spectra with respect to equivalent. The absorption spectra showed a red shifted λmax at 540 nm in tetrahydrofuran solutions and 580 nm in spin‐coated films, with respect to poly(3‐alkylthiophene)s. A further red shift of 40 nm in going from solution (540 nm) to solid states (580 nm) is correlated with results from density functional theory electronic structure calculations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7505–7516, 2008  相似文献   

15.
In this study, five small band gap thiophene ( TH )–thienopyrazine ( TP ) conjugated copolymers were synthesized by Stille‐coupling reaction. The polymer structures consisted of one to four thiophene rings with the TP of different side groups provided a systematical investigation on the structure–electronic property relationship. The absorption maxima of the polymer films decreased from 850 to 590 nm as the thiophene moieties increased from thiophene to quaterthiophene. The optical and electrochemical band gaps of the studied poly[2,3‐didodecyl‐5‐(thiophen‐2‐yl)thieno[3,4‐b]pyrazine] ( PTHTP‐C12 ) were 0.97 and 0.78 eV, respectively, indicating a significant intramolecular charge transfer. The theoretical geometry and electronic properties of the TH ‐ TP copolymers by the density functional theory at the B3LYP level and 6‐31G(d) basis set suggested that the bond length alternation enlarged with enhancing the thiophene content and resulted in the variation on the polymer band gap. The relatively small theoretical effective mass of poly( TH ‐alt‐ TP ) also indicated its potential applications for field transistor applications. Our study demonstrates the tunable electronic properties of small band gap copolymers by the thiophene content and the resulted geometry variation. Such polymers could be potentially used for near‐infrared electronic and optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5872–5883, 2007  相似文献   

16.
A new series of 2,1,3‐benzothiadiazole (BT) acceptors with different conjugated aryl‐vinylene side chains have been designed and used to build efficient low‐bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2‐b:3,4‐b′]dithiophene and the resulting new BT derivatives, three two‐dimensional (2D)‐like donor (D)–acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl‐vinylene side chains. The copolymer with phenyl‐vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D–A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6‐31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]‐phenyl‐C61(C71)‐butyric acid‐methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100 mW cm?2. The results showed that the device based on the copolymer with phenyl‐vinylene side chains had the highest efficiency of 2.17 % with PC71BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll‐to‐roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT‐based copolymers can also be achieved by fine‐tuning the structures of the aryl‐vinylene side chains for photovoltaic application.  相似文献   

17.
In order to clarify the structural changes that occur in the thermochromic phase transition of poly (3-dodecylthiophene) [P3DT] and poly (3-hexylthiophene) [P3HT], the temperature dependence of x-ray diffraction and Fourier transform infrared spectra was measured. (1) Orthogonal unit-cell parameters were determined at room temperature: a=25.83 Å, b=7.75 Å, c (fiber axis)=7.77 Å for P3DT and a=16.63 Å, b=7.75 Å, and c=7.77 Å for P3HT. A large variation of the a-axis length between P3DT and P3HT indicates the extended trans conformation for the alkyl side chains which are oriented along the lateral a-axis direction. (2) The interplanar spacing, intensity, and integral width of the x-ray (h00) and (00l) reflections were found to change drastically in the transition region. (3) Polarized infrared measurements at high temperature revealed a marked increase of the gauche band intensity for the alkyl side group modes followed by a decrease in the band intensity of the thiophene ring modes. (4) The layer reflections of the x-ray fiber diagram become diffuse at high temperatures, indicating that the transition occurs in a liquidcrystalline manner with the orientation of the main chain axes preserved but with almost no axial correlation between the neighboring main chains. These results provide experimental support for the structural model proposed earlier: as the temperature increases, the trans-type side chains begin to disorder by introduction of gauche bonds. This disordering disrupts the regularity of the main chain conformation and decreases the effective length of the polythiophene conjugated system.  相似文献   

18.
The synthesis and characterization of two donor acceptor type conjugated polymers were investigated. Electrochemical properties were examined by cyclic voltammetry, spectroelectrochemistry and kinetic studies. The increase in the alkyl chain length attached to the fluorene unit was investigated in terms of electrochemical properties. The synthesis was carried out via Stille coupling of 4,7-dibromo-4′-(tert-butyl)spiro[benzo[d]imidazole-2,1′ cyclohexane] and 2,5-bis(tributylstannyl)thiophene with 9,9-dihexyl-9H fluorine (P1) and 9,9-didodecyl-9H fluorene (P2) respectively. Both polymers were neutral state green polymers. They had optical band gaps of 1.55 and 1.47 eV respectively. Increasing the chain length resulted in an increase in solubility and processibility of the polymer. Polymers are multichromic, revealing colors from neutral state green to doped state blue.  相似文献   

19.
The optical properties and electrical properties of a series of low‐band‐gap conjugated copolymers, in which alkyl side chains were substituted at various positions, were investigated using donor–acceptor conjugated copolymers consisting of a cyclopentadithiophene derivative and dithienyl‐benzothiadiazole. With substituted side chains, the intrinsic properties of the copolymers were significantly altered by perturbations of the intramolecular charge transfer. The absorption of poly[2, 6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4, 7‐bis(4‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐ttOTBTOT ( P2 )], which assumed a tail–tail configuration, tended to blue shift relative to the absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4,7‐bis (thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐TBTT ( P1 )]. The absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3, 4‐b′]dithiophene)‐alt‐4,7‐bis(3‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐hhOTBTOT ( P3 )], which assumed a head–head configuration, was blue shifted relative to that of P2 . The electrical transport properties of field‐effect transistors were sensitive to the side chain position. The field‐effect mobility in P2 (μ2 = 1.8 × 10?3 cm2/V s) was slightly lower than that in P1 (μ1 = 4.9 × 10?3 cm2/V s). However, the mobility of P3 was very low (μ3 = 3.8 × 10?6 cm2/V s). Photoexcitation spectroscopy showed that the charge generation efficiency (shown in transient absorption spectra) and polaron pair mobility in P1 and P2 were higher than in P3 , yielding P1 and P2 device performances that were better than the performance of devices based on P3 . © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
We synthesized dialkoxy-substituted poly[phenylene vinylene]s (dROPPV-1/1, 0.2/1, and 0/1) consisting of two repeating units with different side-chain lengths (methoxy and 3,7-dimethyloctyloxy). These polymers can serve as a model system to clarify roles of aggregates (the sites with ground-state interchain interactions) and the independent chain segments in the well-packed chains (the chain segments that are compactly packed without interaction) in the emission mechanism of conjugated polymers. Due to the packing of polymer chains, films of all of these polymers are accessible to interchain excitations, after which excitons can re-form to result in delayed luminescence. Besides, some chains form aggregates so that the delayed luminescence is no more the ordinary single-chain emission but red-shifted and less structured. Not only the re-formation of these indirect excitons but also the aggregation of chains are facilitated in the polymers with short methoxy side groups, revealing that both packing and aggregation of chain segments require a short spacing between polymer chains. However, the incorporation of other side chains such as the 3,7-dimethyloctyloxy group to dROPPVs is necessary for the formation of aggregates because these long branched side chains can reduce the intrachain order imposed by the short methoxy groups, which accounts for the absence of aggregate emission in the well-studied poly[2,5-dimethoxy-1,4-phenylene vinylene]. This study reveals that the well-packed chains do not necessarily form aggregates. We also show that the photophysical properties and the film morphology of conjugated polymers can be deliberately controlled by fine-tuning of the copolymer compositions, without altering the optical properties of single polymer chains (e.g., as in dilute solutions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号