首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
采用水溶液均聚合方法,制备了阳离子型表面活性单体(2-丙烯酰胺基)乙基十四烷基二甲基溴化铵(AMC14AB)的均聚物,使用荧光探针法、表面张力测定及电导测定法,重点考察了均聚物P(AMC14AB)在水溶液中的胶束化行为与表面吸附现象.在水溶液中,均聚物P(AMC14AB)呈现单分子链胶束的聚集形态,具有零临界胶束浓度(CMC=0),从开始加入P(AMC14AB)起,水溶液中随即产生单分子链胶束,不存在Krafft温度.P(AMC14AB)在溶液表面也发生表面吸附,使水的表面张力下降,即P(AMC14AB)也具有表面活性;随着浓度增大,表面吸附量增大,水的表面张力持续下降;当表面吸附达到饱和时,表面张力一浓度曲线上出现突变点,该点应该定义为饱和的表面吸附浓度(SSAC),而不应该再称为临界胶束浓度.P(AMC14AB)单分子链胶束溶液对疏水有机物(甲苯)的增溶情况,明显不同于普通小分子表面活性剂十六烷基二甲基溴化铵(CTAB)的多分子胶束溶液,甲苯增溶量-P(AMC14AB)浓度的关系曲线上无突变点,而且对甲苯的增溶能力高于CTAB的多分子胶束溶液.  相似文献   

2.
In order to study the effect of charge on the adsorption of surfactants at the air–water interface, two carboxybetaines have been synthesized with different number of separation methylenes between their charged groups. After purification and structure confirmation, the equilibrium and dynamic surface tensions were measured as a function of surfactant concentration for both the cationic and neutral forms of the surfactant molecules. The effect of ionic strength on the adsorption process was also studied. The equilibrium surface tension values were interpreted according to the Langmuir model and the dynamic surface tension data, converted to surface concentration by the Langmuir parameters, are consistent with the assumption of diffusion control over the range of surfactant concentrations studied. The diffusion coefficients show a progressive decrease in the rate of adsorption when the number of methylene units between the betaine charged groups increase.  相似文献   

3.
In the present work, the adsorption behavior at the liquid-air interface and micellization characteristics of mixtures of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl) polyoxyethylene (TritonX-100) in aqueous media containing different concentrations of NaBr were investigated by surface tension and potentiometry measurements. From plots of surface tension (gamma) as a function of solution composition and total surfactant concentration, we determined the critical micelle concentration (CMC), minimum surface tension at the CMC (gamma(CMC)), surface excess (Gamma(max)), and mean molecular surface area (A(min)). On the basis of regular solution theory, the compositions of the adsorbed film (Z) and micelles (X(M)) were estimated, and then the interaction parameters in the micelles (beta(M)) and in the adsorbed film phase (beta(sigma)) were calculated. For all mole fraction ratios, the results showed synergistically enhanced ability to form mixed micelles as well as surface tension reduction. Furthermore beta was calculated by considering nonrandom mixing and head group size effects. It was observed that, for both the planar air/aqueous interface and micellar systems, the nonideality decreased as the amount of electrolyte in the aqueous medium was increased. This was attributed to a decrease of the surface charge density caused by increasing the concentration of bromide ions.  相似文献   

4.
Exact knowledge of the dead time as part of the bubble lifetime in the maximum bubble pressure method is an important prerequisite for accurate dynamic surface tension measurements. The duration of the dead time depends essentially on the capillary geometry and affects significantly the measured surface tensions of concentrated surfactant solutions. Increase of the dead time leads to a significant surface tension decrease of a freshly formed bubble surface due to the significantly higher residual adsorption of the surfactant molecules. It is shown that correct dynamic surface tensions are obtained with the experimental procedure of Sugden's method only when in addition to the fixed frequency of bubble formation, also the dead time values for the two capillaries are kept constant.  相似文献   

5.
The pendant bubble method is commonly used to measure the evolution of the surface tension of surfactant solutions. Initially, the bubble interface is free of adsorbed surfactant. As time progresses, surfactant diffuses to the interface, adsorbs, and reduces the surface tension. The surface tension is assumed to be in equilibrium with the instantaneous surface concentration. Therefore, surface tension data are analyzed in terms of interfacial thermodynamics and mass transfer models in order to infer the mechanisms which determine the surfactant transport. Diffusion from the bulk solution to the bubble can be approximated as diffusion to a spherical interface. Approximating this process as diffusion to a plane introduces significant errors into the data analysis. Mass transfer to a sphere differs from that to a plane; the equilibration of the spherical interface is more rapid simply because of geometry. The failure to account for this effect in the interpretation of pendant bubble data can lead to serious errors in the transport coefficients for the surfactants. In the diffusion-controlled limit, surfactant diffuses to the sublayer immediately adjacent to the interface and adsorbs in local equilibrium according to the adsorption isotherm. There is a closed-form solution for Fick's law describing adsorption to a sphere in an infinite solution which reduces to the Ward and Tordai solution when the bubble radius is large. This equation, along with the adsorption isotherm relating the surface concentration and the sublayer concentration, must be solved numerically in order to solve for the time evolution of the surface concentration. At early times, the adsorption isotherm can be expanded about the clean interface state. At long times, small departures from the equilibrium state can be assumed. In these limits, asymptotic expansions can be obtained. The short- and long-time expansions are found in this study for adsorption to a sphere and compared to those obtained previously for adsorption to a planar interface. In particular, the long-time asymptote for adsorption to a sphere is proportional to t(-3/2); this asymptote differs significantly from that for adsorption to a plane, which goes as t(-1/2). The full solution for adsorption to a sphere is compared to the Ward and Tordai solution for adsorption to a planar interface. From a comparison of the full solutions, it is established that curvature cannot be neglected unless the ratio of the adsorption depth to the bubble radius is negligible. This ratio can be calculated a priori from equilibrium isotherm parameters. Using constants which describe the surfactant C(12)E(8), for which curvature plays a strong role in the surfactant adsorption dynamics, the short- and long-time solutions for adsorption to the interface are compared to the full solutions and to dynamic surface tension data to infer the range of validity of the approximations. Copyright 2001 Academic Press.  相似文献   

6.
The equilibrium and dynamic surface tensions of five long-chain alkyl ammonium hydroxides (AAH) at the air/aqueous solution interface were investigated, and the effects of the length and number of alkyl chain on surface tensions had been discussed. With the increase of the length, the equilibrium surface tension (EST) increased from 28.65 to 40.52?mN/m. While, for the double chains at the critical micelle concentration (CMC), the EST decreased from 32.71 to 26.61?mN/m with the length increasing. In addition, the adsorption behaviors of the AAH were analyzed and the effective diffusion coefficients (Deff) were calculated on basis of the Ward–Tordai equation. Moreover, the time required to attain the EST decreases with the increase of surfactant concentration. The longer the C–H chain is, the lower surface tension at initial concentration is. What’s more, the diffusion processing of the AAH to air/water interface mainly depends on the surfactant concentration, and the adsorption is controlled by diffusion mechanism in a dilute concentration, while under a high concentration the adsorption is controlled by mixed diffusion–kinetic mechanism.  相似文献   

7.
The adsorption kinetics of micellar solutions of anionic/cationic SDS/DATB mixtures with mixing ratios of 10/1 and 10/2, respectively, are studied experimentally by means of the maximum bubble pressure method. For long adsorption times the adsorption of the highly surface-active anionic/cationic complex leads to a decrease of dynamic surface tension in comparison to the single SDS system. However, the situation is the reverse for short adsorption times where the dynamic surface tension is increased by addition of the cationic surfactant, although the overall concentration is increased. This unexpected behavior is explained by partial solubilization of free SDS molecules into micelles formed by SDS/DTAB complexes. With increasing overall concentration, when eventually the CMC of SDS is reached, the anionic/cationic complex itself is solubilized by SDS micelles. Finally, no complex micelles, which for their part can solubilize an excess of SDS molecules, are present. Hence, the dynamic properties of the solution are no longer influenced by the depletion of SDS molecules and the mixture tends to behave like a pure SDS solution.  相似文献   

8.
The imbibition of aqueous solutions of Triton X-100 in calcium fluoride columns has been studied in order to determine the influence of the interfacial adsorption of the surfactant in the capillary rise of the solutions. This system has been chosen because this surfactant behaves as non-adsorbable at the surface of this solid when it is in aqueous solution. The experiments have consisted of the measurement of the increase in the weight of the porous columns caused by the capillary rise of the solutions. The analysis of the results has been made through a modified expression of Washburn's equation that takes into account that the experimental increase in the weight is caused by the imbibition as well as by the development of a liquid meniscus around the bottom base of the columns. From this analysis, it has been deduced that the surfactant concentration does not influence on the imbibition rate, it being equal to the observed for water. However, it has been also proved that the contact angle depends on the surfactant concentration, taking decreasing values as the surface tension of the solutions decreases. In order to justify these findings, a study about the influence of the interfacial adsorption on the imbibition has been carried out. By means of them, it has been proved that the absence of adsorption at the solid-liquid interface is the reason that explains both the independence of the imbibition rate from the surfactant concentration and the decrease of the contact angle. Moreover, this fact indicates that the depletion of the surfactant molecules from the advancing meniscus, which has been normally adduced as the phenomenon causing the observed behaviour, has to be ruled out as the physical cause that justifies the behaviour found from the analysis of the imbibition experiments. As a corollary, it has been also stated that only if the adsorption at the solid interfaces happened, the imbibition of aqueous solution of surfactant in hydrophilic media could be influenced by the surfactant concentration.  相似文献   

9.
The association of many classes of surface active molecules into micellar aggregates is a well-known phenomenon. Micelles are often drawn as static structures of spherical aggregates of oriented molecules. However, micelles are in dynamic equilibrium with surfactant monomers in the bulk solution constantly being exchanged with the surfactant molecules in the micelles. Additionally, the micelles themselves are continuously disintegrating and reforming. The first process is a fast relaxation process typically referred to as τ1. The latter is a slow relaxation process with relaxation time τ2. Thus, τ2 represents the entire process of the formation or disintegration of a micelle. The slow relaxation time is directly correlated with the average lifetime of a micelle, and hence the molecular packing in the micelle, which in turn relates to the stability of a micelle. It was shown earlier by Shah and coworkers that the stability of sodium dodecyl sulfate (SDS) micelles plays an important role in various technological processes involving an increase in interfacial area, such as foaming, wetting, emulsification, solubilization and detergency. The slow relaxation time of SDS micelles, as measured by pressure-jump and temperature-jump techniques was in the range of 10−4–101 s depending on the surfactant concentration. A maximum relaxation time and thus a maximum micellar stability was found at 200 mM SDS, corresponding to the least foaming, largest bubble size, longest wetting time of textile, largest emulsion droplet size and the most rapid solubilization of oil. These results are explained in terms of the flux of surfactant monomers from the bulk to the interface, which determines the dynamic surface tension. The more stable micelles lead to less monomer flux and hence to a higher dynamic surface tension. As the SDS concentration increases, the micelles become more rigid and stable as a result of the decrease in intermicellar distance. The smaller the intermicellar distance, the larger the Coulombic repulsive forces between the micelles leading to enhanced stability of micelles (presumably by increased counterion binding to the micelles). The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped-flow and pressure-jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results show relaxation times τ2 in the range of seconds for Triton X-100 to minutes for polyoxyethylene alkyl ethers. The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation time τ2 was related to dynamic surface tension and foaming experiments. A slow break-up of micelles, (i.e. a long relaxation time τ2) corresponds to a high dynamic surface tension and low foamability, whereas a fast break-up of micelles, leads to a lower dynamic surface tension and higher foamability. In conclusion, micellar stability and thus the micellar break-up time is a key factor in controlling technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification and oil solubilization. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the break-up of micelles. Especially when the free monomer concentration is low, as indicated by a low CMC, the micellar break-up time is a rate limiting step in the supply of monomers, which is the case for many nonionic surfactant solutions. Therefore, relaxation time data of surfactant solutions enables us to predict the performance of a given surfactant solution. Moreover, the results suggest that one can design appropriate micelles with specific stability or τ2 by controlling the surfactant structure, concentration and physico-chemical conditions, as well as by mixing anionic/cationic or ionic/nonionic surfactants for a desired technological application.  相似文献   

10.
Surface tension measurements were employed to monitor the erythrocyte hemolysis process induced by surfactants. Two types of surfactants were used: the cationic surfactant DTAB and the anionic surfactant SDS. During DTAB-induced hemolysis, the changes in surface tension clearly demonstrate three stages. The first stage is characterized by surface tension increase, which is explained by surfactant removal from the suspending solution, due to adsorption onto cell membranes. In the second stage, surface tension remains constant, implying that equilibrium is attained between the membrane-bound surfactant and the surfactant in solution. The third stage is characterized by surface tension decrease that begins simultaneously with measurable cell-interior release, and lasts until hemolysis is completed. With SDS-induced hemolysis, the same three stages are observed at a low concentration; however, fluctuational increase in surface tension is obtained for higher concentrations. The latter is explained by additional adsorption of surfactant to solubilized membrane fragments.  相似文献   

11.
Kinetics of adsorption from micellar solutions   总被引:2,自引:0,他引:2  
Previous studies on surfactant adsorption mostly deal with dilute systems without aggregation in the bulk phase. At the same time, micellar solutions can be more important from the point of view of applications. If one attempts to estimate the equilibrium adsorption, neglecting the influence of micelles can lead to reasonable results. The situation differs for non-equilibrium systems when the adsorption rate can increase by an order of magnitude at the increase of the surfactant concentration beyond the CMC. A critical survey of various models describing the influence of micelles on adsorption kinetics at the liquid-gas interface is given and the theoretical results are compared with existing experimental data. The theories proposed for the case of large deviations from the equilibrium are usually based on some unjustifiable assumptions and can describe the kinetic dependencies of adsorption in only a limited number of situations. Consequently, only rough estimates of the kinetic coefficients of micellization can be obtained from experimental data on dynamic surface tension. More rigorous equations can be derived if the system only deviates slightly from equilibrium. In the latter case, the agreement between theoretical and experimental results is essentially better and measurements of the dynamic surface elasticity of micellar solutions allow us to study the micellization kinetics.  相似文献   

12.
The air‐solution equilibrium tension, γc and dynamic surface tension, γt, of aqueous solutions of a novel ionic surfactant benzyltrimethylammonium bromide (BTAB) were measured by Wilhelmy method and Maximum bubble pressure method (MBPM), respectively. Adsorption equilibrium and mechanism of BTAB at the air‐solution interface were studied. The CMC was determined to be 0.11 mol/L. The results show that at the start, the adsorption process is controlled by a diffusion step. Toward the end, it changes to a mixed kinetic‐diffusion controlled mechanism with the adsorption activation energy of about 11.0 KJ/mol. Effects of temperature, inorganic salts, and alcohols on adsorption kinetics also are discussed.  相似文献   

13.
阴离子孪连表面活性剂的合成及其表/界面活性研究   总被引:3,自引:0,他引:3  
谭中良  韩冬 《化学通报》2006,69(7):493-497
合成了疏水链长度不同和连接基长度不同的7种系列阴离子孪连表面活性剂,研究了它们的表/界面活性。结果表明,它们有较低的表面张力和临界胶束浓度(CMC),有很好的表面活性。它们的CMC都在10-5~10-6mol/L之间,表面张力在26·5~34mN/m之间。它们有非常好的抗一价、二价盐的能力。除了C16-C2-C16在高于5%的NaCl溶液中会产生析出外,其余孪连表面活性剂都能耐盐20%以上。随着盐浓度的增加,孪连表面活性剂与烷烃间的界面张力逐渐降低,能达到10-3mN/m。与中原油田原油间的界面张力能降低到10-3~10-4mN/m,表明它们可应用于特高矿化度油藏提高采收率。  相似文献   

14.
全氟辛酸钠和溴化烷基三甲铵混合水溶液的界面化学性质   总被引:2,自引:1,他引:2  
测定了一系列不同比例的C_7F_(15)COONa与阳离子表面活性剂(C_3H_(17)N(CH_3)Br、C_(10)H_(21)N(CH_3)_3Br和C_(12)H_(25)N(CH_3)_3Br)混合水溶液(加NaBr, 恒离子强度μ=0.1 mol kg~(-1))的表面张力及正庚烷/水溶液界面张力。结果表明: 在表面上, 随阳离子表面活性剂碳氢链长增加, 各体系同一比例的饱和总吸附量增大。界面上, 7CFNa~C_8NBr体系的吸附规律与表面相似; 7CFNa~C_(10)NBr体系饱和总吸附量在1:1时最小; 而7CFNa~C_(12)NBr体系, 其饱和吸附量随7CFNa比例减小而减小。混合物的表(界)面活性均比单一表面活性剂高。随着阳离子表面活性剂碳氢链增加, 混合溶液降低表面张力的能力有所下降, 而降低表面张力的效率有所提高, 自表面吸附层结构与表面张力的关系对比作了说明。  相似文献   

15.
Measurements of the advancing contact angle (theta) were carried out for an aqueous solution of p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol)s (Triton X-100 (TX100) and Triton X-165 (TX165) mixtures) on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE depends on the concentration and composition of the surfactant mixture. The minimum of the dependence between the contact angle and composition of the mixtures for PTFE for each concentration at a monomer mole fraction of TX100, alpha = 0.8, points to synergism in the wettability of PTFE. This effect was confirmed by the negative values of interaction parameters calculated on the basis of the contact angle and by the Rosen approach. In contrast to Zisman, there was no linear dependence between cos theta and the surface tension of an aqueous solution of TX100 and TX165 mixtures for all studied systems, but a linear dependence existed between the adhesional tension and surface tension for PTFE over the whole concentration range, the slope of which was -1, indicating that the surface excess of the surfactant concentration at the PTFE-solution interface was the same as that at the solution-air interface for a given bulk concentration. Similar values of monomer mole fractions of the surfactants at water-air and PTFE-water interfaces calculated on the basis of the surface tension and contact angles showed that adsorption at these two interfaces was the same. It was also found that the work of adhesion of an aqueous solution of surfactants to the PTFE surface did not depend on the type of surfactant and its concentration. This means that for the studied systems the interaction across the PTFE-solution interface was constant and was largely of Lifshitz-van der Waals type. On the basis of the surface tension of PTFE, the Young equation, and the thermodynamic analysis of the adhesion work of an aqueous solution of surfactant to the polymer surface, it was found that in the case of PTFE the changes in the contact angle as a function of the mixture concentration of two nonionic surfactants resulted only from changes in the polar component of the solution surface tension.  相似文献   

16.
In this work we present equilibrium and dynamic surface tension together with dilational elasticity data for dodecyltrimethylammonium bromide in the presence of lambda-carrageenan, a sulfated polysaccharide extracted from algae. The critical aggregation concentration and (CAC) and critical micellar concentration CMC of the mixed system were determined and shown to have a direct influence on the elasticity modulus. The behavior of the adsorption kinetics was shown to be dependent on the surfactant to polyelectrolyte charge ratio or excess species in the bulk solution.  相似文献   

17.
Kinetic and equilibrium aspects of three different poly(ethylene oxide) alkylethers (C12E5, C12E7, C14E7) near a flat cellulose surface are studied. The equilibrium adsorption isotherms look very similar for these surfactants, each showing three different regions with increasing surfactant concentration. At low surfactant content both the headgroup and the tail contribute to the adsorption. At higher surface concentrations, lateral attraction becomes prominent and leads to the formation of aggregates on the surface. The general shape of the isotherms and the magnitude of the adsorption resemble mostly those for hydrophilic surfaces, but both the ethylene oxide and the aliphatic segments determine affinity for the surface. The adsorption and desorption kinetics are strongly dependent on surfactant composition. At bulk concentrations below the CMC, the initial adsorption rate is attachment-controlled. Above the CMC, the micellar diffusion coefficient and the micellar dissociation rate play a crucial role. For the most hydrophilic surfactant, C12E7, both parameters are relatively large. In this case, the initial adsorption rate increases with increasing surfactant concentration, also above the CMC. For C12E5 and C14E7 there is no micellar contribution to the initial adsorption rate. The initial desorption kinetics are governed by monomer detachment from the surface aggregates. The desorption rate constants scale with the CMC, indicating an analogy between the surface aggregates and those formed in solution.  相似文献   

18.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

19.
A simplified method for predicting the dynamic surface tension of concentrated surfactant solutions is proposed. It is implemented using the framework of the Henry's Law analytical solution to the Ward and Tordai equation for diffusion-controlled adsorption, with the necessary parameters being deduced from the measured equilibrium surface tension equation and a value for the surfactant monomer diffusivity. The method is tested by calculating the dynamic surface tension relaxations of aqueous C10E6 and C10E8 solutions over concentration ranges from well below to well above their critical micelle concentrations (cmc). Results are compared with measured relaxations over 0.001-50 s, and semiquantitative agreement is found, with the best results obtained for concentrations near the cmc. The predictive method may prove useful in such applications as the screening of candidate surfactants for inks used in inkjet printing.  相似文献   

20.
Consider the example of surfactant adsorbing from an infinite solution to a freshly formed planar interface. There is an implicit length scale in this problem, the adsorption depth h, which is the depth depleted to supply the interface with the absorbed surfactant. From a mass balance, h can be shown to be the ratio of the equilibrium surface concentration gamma eq to the bulk concentration C infinity. The characteristic time scale for diffusion to the interface is tau D = h2/D, where D is the diffusivity of the surfactant in solution. The significance of this time scale is demonstrated by numerically integrating the equations governing diffusion-controlled adsorption to a planar interface. The surface tension equilibrates within 1-10 times tau D regardless of bulk concentration, even for surfactants with strong interactions. Dynamic surface tension data obtained by pendant bubble method are rescaled using tau D to scale time. For high enough bulk concentrations, the re-normalized surface tension evolutions nearly superpose, demonstrating that tau D is indeed the relevant time scale for this process. Surface tension evolutions for a variety of surfactants are compared. Those with the smallest values for tau D equilibrate fastest. Since diffusion coefficients vary only weakly for surfactants of similar size, the differences in the equilibration times for various surfactant solutions can be attributed to their differing adsorption depths. These depth are determined by the equilibrium adsorption isotherms, allowing tau D to be calculated a priori from equilibrium surface tension data, and surfactant solutions to be sorted in terms of which will reduce the surface tension more rapidly. Finally, trends predicted by tau D to gauge what surfactant properties are required for rapid surface tension reduction are discussed. These trends are shown to be in agreement with guiding principles that have been suggested from prior structure-property studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号