首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The approach of water droplets self-running horizontally and uphill without any other forces was proposed by patterning the shape-gradient hydrophilic material (i.e., mica) to the hydrophobic matrix (i.e., wax or low-density polyethylene (LDPE)). The shape-gradient composite surface is the best one to drive water droplet self-running both at the high velocity and the maximal distance among four different geometrical mica/wax composite surfaces. The driving force for the water droplets self-running includes: (1) the great difference in wettability of surface materials, (2) the low contact angle hysteresis of surface materials, and (3) the space limitation of the shape-gradient transportation area. Furthermore, the average velocity and the maximal distance of the self-running were mainly determined by the gradient angle (alpha), the droplet volume, and the difference of the contact angle hysteresis. Theoretical analysis is in agreement with the experimental results.  相似文献   

2.
Wetting and absorption of water drops on Nafion films   总被引:1,自引:0,他引:1  
Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detachment angle on an inclined plane, showed much stronger water adhesion on Nafion than Teflon. Sessile water and methanol drops caused dry Nafion films to deflect. The flexure went through a maximum with time. Flexure increased with contact area of the drop, but was insensitive to the film thickness. Methanol drops spread more on Nafion and caused larger film flexure than water. The results suggest that the Nafion surface was initially hydrophobic but water and methanol drops caused hydrophilic sulfonic acid domains to be drawn to the Nafion surface. Local swelling of the film beneath the water drop caused the film to buckle. The maximum flexure is suggested to result from motion of a water swelling front through the Nafion film.  相似文献   

3.
紫外光引发LDPE膜接枝含氟丙烯酸酯的研究   总被引:7,自引:0,他引:7  
通过紫外光引发表面接枝聚合反应的方法 ,把含氟丙烯酸酯单体R 5 6 1 0引到LDPE薄膜上 .对经丁酮抽提后的接枝膜进行FTIR、ESCA、SEM和DSC等表征 ,证实含氟聚合物以化学键的方式接枝在LDPE基体膜上 .在一定范围内 ,增加紫外光强、引发剂和单体浓度以及反应温度等均有利于提高接枝率 .经计算R 5 6 1 0的紫外光引发接枝聚合反应总活化能为 5 4 2kJ mol.接枝膜的接触角随着接枝率的提高逐步增大 ,直至趋于恒定 .作者提出接枝膜存在一个在接触角测定时影响基体膜与探测水滴相互作用过程的边界层 .当接枝率较低、接枝层厚度小于边界层临界厚度时 ,基体LDPE影响接触角的大小 ,但随着接枝率提高 ,接枝层逐渐变厚 ,氟聚合物层对接触角的贡献逐渐占优势 ,导致接触角随之增大 .当接枝率超过一定值以后 ,接枝层厚度超过边界层临界厚度 ,接枝层对接枝膜的接触角起全部贡献 ,接触角测定值随之稳定  相似文献   

4.
Results from experiments performed on the motion of drops of tetraethylene glycol in a wettability gradient present on a silicon surface are reported and compared with predictions from a recently developed theoretical model. The gradient in wettability was formed by exposing strips cut from a silicon wafer to dodecyltrichlorosilane vapors. Video images of the drops captured during the experiments were subsequently analyzed for drop size and velocity as functions of position along the gradient. In separate experiments on the same strips, the static contact angle formed by small drops was measured and used to obtain the local wettability gradient to which a drop is subjected. The velocity of the drops was found to be a strong function of position along the gradient. A quasi-steady theoretical model that balances the local hydrodynamic resistance with the local driving force generally describes the observations; possible reasons for the remaining discrepancies are discussed. It is shown that a model in which the driving force is reduced to accommodate the hysteresis effect inferred from the data is able to remove most of the discrepancy between the observed and predicted velocities.  相似文献   

5.
Low density polyethylene (LDPE) was modified by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV. Surface energy and structural transformations were observed during storage of the modified LDPE in air after PIII, by wettability measurements and FTIR-ATR spectra respectively. The appearance of oxygen-containing groups has some kinetic stages with characteristic times from hours to days. The surface energy values attained and comparison with the kinetics of oxidation reveal that the initial changes in the surface energy of LDPE are caused mainly by free radicals and to a lesser extent by oxygen-containing groups. The final surface energies observed after the process known as hydrophobic recovery and the surface energies stabilize are attributable to oxygen-containing groups. The modified surface is “living” and an investigation of the wettability, surface energy, unsaturated and oxygen-containing groups in the surface layer of ion beam modified polymers is incomplete if the kinetics of structural transformations after modification is not taken into account.  相似文献   

6.
以铝片为基底, 经电化学腐蚀和沸水处理制备了多级微纳米结构; 通过气相沉积和涂油分别制备了超疏水表面、 疏水超润滑(slippery)表面和亲水slippery表面; 探究了表面不同的特殊浸润性(超亲水、 超疏水、 疏水slippery和亲水slippery)对液滴凝结的影响. 结果表明, 超亲水表面的液滴凝结属于膜状冷凝, 超疏水表面和slippery表面的液滴凝结均属于滴状冷凝. 超疏水表面液滴合并时, 合并的液滴会不定向弹离表面. 疏水slippery表面和亲水slippery表面由于表面浸润性的不同导致液滴成核密度和液滴合并的差异, 亲水slippery表面凝结液滴的最大体积远大于疏水slippery表面凝结液滴的最大体积. 4种表面的雾气收集效率由大到小依次为亲水slippery表面>疏水slippery表面>超亲水表面>超疏水表面.  相似文献   

7.
In order to study the effect of sharp edges on solid particle adhesion to air-liquid interfaces, spherical colloidal probes were modified with a circumferential cut by focused ion beam milling. The interaction of the modified particles with water drops and bubbles was studied using the colloidal probe technique. When the modified particles were brought into contact with air-liquid interfaces, the contact line was pinned at the edge of the cut. Contact hysteresis between the approach and retraction components of the measured force curves was eliminated. The contact angle at the edge takes a range of values within the limits defined by the Gibbs inequality. These limits determine the adhesion force. As such, the adhesion force is a function of the particle wettability and edge geometry.  相似文献   

8.
In this paper, we have prepared of a topography/chemical composition gradient polystyrene (PS) surface, i.e., an orthogonal gradient surface, to investigate the relationship between surface wettability and surface structure and chemical composition. The prepared surface shows a one-dimensional gradient in wettability in the x, y, and diagonal directions, including hydrophobic to hydrophilic, superhydrophobic to hydrophobic, superhydrophobic to superhydrophilic gradients, and so forth. These one-dimensional gradients have different gradient values, gradient range, and contact angle hysteresis, which lie on both the surface roughness and the surface compositions. From the trend of variation of contact angle hysteresis, it can be concluded that the transition from the Cassie's model to the Wenzel's model occurs both by decreasing surface roughness and by increasing surface hydrophilic compositions. Moreover, the transition is more effective via changing surface chemical composition than changing surface roughness herein.  相似文献   

9.
Patterned polymeric coatings enriched with colloidal TiO(2) nanorods and prepared by photopolymerization are found to exhibit a remarkable increase in their water wettability when irradiated with UV laser light. The effect can be completely reversed using successive storage in vacuum and dark ambient environment. By exploiting the enhancement of the nanocomposites hydrophilicity upon UV irradiation, we prepare wettability gradients along the surfaces by irradiating adjacent surface areas with increasing time. The gradients are carefully designed to achieve directional movement of water drops along them, taking into account the hysteresis effect that opposes the movement as well as the change in the shape of the drop during its motion. The accomplishment of surface paths for liquid flow, along which the hydrophilicity gradually increases, opens the way to a vast number of potential applications in microfluidics.  相似文献   

10.
Macroporous polystyrene/divinylbenzene (PS‐DVB) monoliths were obtained using highly concentrated W/O emulsions as templates. These monoliths are of interest due to the high potential applications for catalysis, scaffolds for tissue engineering, filters, membranes, or drug delivery systems. Dynamic wetting behavior through the polymer monolith is directly related to contact angle. For this reason, in this paper we investigate the relationship between contact angle, morphology, and chemical composition of the dense skin layer and the highly porous interior surface of PS‐DVB porous monoliths. Whereas the dense skin layer exhibits a Wenzel regime using water as wetting liquid, the highly porous interior surface exhibits a Cassie–Baxter regime. This behavior is correlated with the roughness observed by scanning electron microscopy (SEM). However, the observed contact angle hysteresis seems to indicate that factors other than surface roughness should be taken into account. For this reason, chemical composition was also studied by elemental microanalysis and X‐ray photoelectron spectroscopy (XPS). The differences in chemical composition observed between the dense skin layer and the highly porous interior surface, according to the wetting model for a heterogeneous surface proposed by Johnson and Dettre, seems also to contribute to the wetting hysteresis. The different wetting between the dense skin layer and the highly porous interior surface results in a dual wettability phenomenon, in which a liquid wets the dense skin layer and does not penetrate into the highly porous interior of the PS‐DVB monoliths. This phenomenon can be of relevance in absorption or desorption processes such as in drug delivery processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The spreading and recoiling of water drops on several flat and macroscopically smooth model surfaces and on sized paper surfaces were studied over a range of drop impaction velocities using a high-speed CCD camera. The water drop spreading and recoiling results on several model hydrophobic and hydrophilic surfaces were found to be in agreement with observations reported in the literature. The maximum drop spreading diameter for those model surfaces at impact was found to be dependent upon the initial drop kinetic energy and the degree of hydrophobicity/hydrophilicity of the surface. The extent of the maximum drop recoiling was found to be much weaker for hydrophilic substrates than for hydrophobic substrates. Sized papers, however, showed an interesting switch of behaviour in the process of water drop impaction. They behave like a hydrophobic substrate when a water drop impacts on it, but like a hydrophilic substrate when water drop recoils. Although the contact angle between water and hydrophilic or hydrophobic non-porous surfaces changes from advancing to receding as reported in literature, the change of contact angle during water impact on paper surface is unique in that the level of sizing was found to have a smaller than expected influence on the degree of recoil. Atomic force microscopy (AFM) was used to probe fibres on a sized filter paper surface under water. The AFM data showed that water interacted strongly with the fibre even though the paper was heavily sized. Implications of this phenomenon were discussed in the context of inkjet print quality and of the surface conditions of sized papers. Results of this study are very useful in the understanding of inkjet ink droplet impaction on paper surfaces which sets the initial condition for ink penetration into paper after impaction.  相似文献   

12.
The hydrophobic solid surface modification with fluorine‐containing monomers has received tremendous attention because of its unique structure and excellent property. However, these hydrophobic films normally suffer from two major problems: one is weak interface interaction between fluoropolymers and substrates, and the other is the high cost of fluorine‐containing monomers. Herein, with the aim of feasible industrial application, a facile in situ UV photo‐grafting method is reported, which could ensure the formation of chemical bonds between fluoropolymer‐grafted layer and substrate with a low cost commercial 2,2,2‐trifluoroethyl methacrylate (TFEMA) as monomer. With low‐density polyethylene (LDPE) film as a model substrate, four kinds of poly‐TFEMA‐grafted layer are fabricated on LDPE films with different surface morphologies: polymer brush, polymer network, crosslinked nanoparticles, and a micro‐ and nanoscale hierarchical structure. The experimental results showed that the water contact angles (CAs) of the LDPE films grafted with polymer brush, polymer network, and crosslinked nanoparticles were (103 ± 2)°, (95 ± 2)°, and (122 ± 2)°, respectively, which were much higher than that of LDPE film. The introduction of micro‐ and nanoscale hierarchical structures can dramatically improve the surface roughness, which will further enhance the film hydrophobicity, and the water CA can reach as high as (140 ± 1)°. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1059–1067  相似文献   

13.
The term superhydrophobicity was introduced in 1996 to describe water-repellent fractal surfaces, made of a hydrophobic material, on which water drops remain as almost perfect spheres and roll off such surfaces leaving no residue. Today, superhydrophobic surfaces are defined as textured materials (and coatings) on (nonsmooth) surfaces on which water forms contact angles 150° and larger, with only a few degrees of contact angle hysteresis (or sliding angle). The terms superhydrophilicity and superwetting were introduced a few years after the term superhydrophobicity to describe the complete spreading of water or liquid on substrates. The definition of superhydrophilic and superwetting substrates has not been clarified yet, and unrestricted use of these terms sometimes stirs controversy. This Letter briefly reviews the superwetting phenomenon and offers a suggestion on defining superhydrophilic and superwetting substrates and surfaces.  相似文献   

14.
Plasma treatment is a versatile tool for surface modifications, and plasma‐induced hydrophilicity has a well‐known aging behavior. In this paper, plasma hydrophilization and the subsequent aging behavior of superhydrophobic and hydrophobic surfaces are comparatively investigated. Static water contact angle measurement and X‐ray photoelectron spectroscopy show that, compared with the hydrophobic surface, the superhydrophobic surface requires more plasma dose to completely change its wettability even after considering the difference in their initial wettability, and the corresponding aging speed is also obviously retarded. A tentative model based on the surface micro/nanostructures is presented to explain the results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Ratcheting motion of liquid drops on gradient surfaces   总被引:2,自引:0,他引:2  
The motions of liquid drops of various surface tensions and viscosities were investigated on a solid substrate possessing a gradient of wettability. A drop of any size moves spontaneously on such a surface when the contact angle hysteresis is negligible; but it has to be larger than a critical size in order to move on a hysteretic surface. The hysteresis can, however, be reduced or eliminated with vibration that allows the drop to sample various metastable states, thereby setting it to the path of global energy minima. Significant amplification of velocity is observed with the frequency of forcing vibration matching the natural harmonics of drop oscillation. It is suggested that the main cause for velocity amplification is related to resonant shape fluctuation, which can be illustrated by periodically deforming and relaxing the drop at low frequencies.  相似文献   

16.
The wetting behavior of a series of aliphatic polyamides was examined. Polyamides and polyethylene were molded against glass to produce smooth surfaces. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while contact angle hysteresis increased. Wetting free energies calculated from contact angles were equal to those from dewetting, suggesting that contact angle hysteresis did not arise from surface anomalies, but from hydrogen bonding between water and the amide groups in the polyamide surfaces.  相似文献   

17.
Spreading of 5-15 microL water drops on self-assembled monolayers of 1-hexadecanethiol and 11-mercapto-1-undecanol, both homogeneous and mixed compositions, formed on gold-coated silicon wafers or glass slides was recorded with a high-speed video camera. The time (t) evolution of the drop base diameter (D) during spreading was analyzed by a power law-correlation: D approximately t(n). The n value was found to increase from n = 0.3-0.5 for water drops on hydrophobic surfaces characterized by the advancing water contact angle of thetaA = 94-104 degrees to n = 0.5-0.8 on less hydrophobic surfaces (thetaA = 45-66 degrees ). These experimental values were found to be of similar magnitude as the literature values reported for small drops and bubbles, which spread over a variety of different substrates including water and water-ethanol drops on self-assembled monolayers of alkylsilanes, air bubbles in water on glass, molten metals on solid metals and ceramics, hydrocarbon drops on water, and others. Inertial effects, which are often not accounted for in the analysis of spreading results, appear to have an impact on the spreading kinetics of small drops in at least the first few milliseconds of the spreading phenomenon.  相似文献   

18.
Small water drops placed on a low-energy substrate with a slight tilt were vibrated parallel to the support with bands of Gaussian white noise of different powers. The drops drifted downward on the inclined support accompanied with random forward and backward movements. For a hysteresis free surface, the drift velocity should only be the product of the component of the gravitational acceleration and the Langevin relaxation time, being independent of the power of noise. On the other hand, in the presence of hysteresis, as is the case here, the drift velocity depends strongly on the power of the noise. This result illustrates the role of hysteresis in the drifted motion of drops on a surface subjected to vibration, which has important bearings on various forms of work fluctuation relations.  相似文献   

19.
Super-hydrophobic surfaces have been fabricated by casting polydimethylsiloxane (PDMS) on a textured substrate of known surface topography, and were characterized using contact angle, atomic force microscopy, surface free energy calculations, and adhesion measurements. The resulting PDMS has a micro-textured surface with a static contact angle of 153.5° and a hysteresis of 27° when using de-ionized water. Unlike many super-hydrophobic materials, the textured PDMS is highly adhesive, allowing water drops as large as 25.0 μL to be inverted. This high adhesion, super-hydrophobic behavior is an illustration of the "petal effect". This rapid, reproducible technique has promising applications in transport and analysis of microvolume samples.  相似文献   

20.
This paper reports a systematic study on the relationship between surface structure and wetting state of ordered nanoporous alumina surface. The wettability of the porous alumina is dramatically changed from hydrophilicity to hydrophobicity by increasing the hole diameter, while maintaining the hole interval and depth. This phenomenon is attributed to the gradual transition between Wenzel and Cassie states which was proved experimentally by comparing the wetting behavior on these porous alumina surfaces. Furthermore, the relationship between surface wettability and hole depth at a fixed hole interval and diameter was investigated. For those porous alumina with relatively larger holes in diameter, transition between Wenzel and Cassie states was also achieved with increasing hole depth. A capillary-pressure balance model was proposed to elucidate the unique structure-induced transition, and the criteria for the design and construction of a Cassie wetting surface was discussed. These structure-induced transitions between Wenzel and Cassie states could provide further insight into the wetting mechanism of roughness-induced wettability and practical guides for the design of variable surfaces with controllable wettability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号