首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
We study random subgraphs of the n-cube {0,1}n, where nearest-neighbor edges are occupied with probability p. Let pc(n) be the value of p for which the expected size of the component containing a fixed vertex attains the value λ2n/3, where λ is a small positive constant. Let ε=n(ppc(n)). In two previous papers, we showed that the largest component inside a scaling window given by |ε|=Θ(2n/3) is of size Θ(22n/3), below this scaling window it is at most 2(log 2)−2, and above this scaling window it is at most O(ε2n). In this paper, we prove that for the size of the largest component is at least Θ(ε2n), which is of the same order as the upper bound. The proof is based on a method that has come to be known as “sprinkling,” and relies heavily on the specific geometry of the n-cube.  相似文献   

2.
M. Deza  P. Frankl 《Combinatorica》1982,2(4):341-345
Let α be a rational-valued set-function on then-element sexX i.e. α(B) εQ for everyBX. We say that α defines a 0-configuration with respect toA⫅2 x if for everyA εA we have α(B)=0. The 0-configurations form a vector space of dimension 2 n − |A| (Theorem 1). Let 0 ≦t<kn and letA={AX: |A| ≦t}. We show that in this case the 0-configurations satisfying α(B)=0 for |B|>k form a vector space of dimension , we exhibit a basis for this space (Theorem 4). Also a result of Frankl, Wilson [3] is strengthened (Theorem 6).  相似文献   

3.
We investigate closed surfaces in Euclidean 3-space satisfying certain functional relations κ = F(λ) between the principal curvatures κ, λ. In particular we find analytic closed surfaces of genus zero where F is a quadratic polynomial or F(λ) = cλ2n+1. This generalizes results by H. Hopf on the case where F is linear and the case of ellipsoids of revolution where F(λ) = cλ3.  相似文献   

4.
Let G be a connected graph. We denote by σ(G,x) and δ(G) respectively the σ-polynomial and the edge-density of G, where . If σ(G,x) has at least an unreal root, then G is said to be a σ-unreal graph. Let δ(n) be the minimum edgedensity over all n vertices graphs with σ-unreal roots. In this paper, by using the theory of adjoint polynomials, a negative answer to a problem posed by Brenti et al. is given and the following results are obtained: For any positive integer a and rational number 0≤c≤1, there exists at least a graph sequence {G i}1≤ia such that G i is σ-unreal and δ(G i)→c as n→∞ for all 1 ≤ia, and moreover, δ(n)→0 as n→∞. Supported by the National Natural Science Foundation of China (10061003) and the Science Foundation of the State Education Ministry of China.  相似文献   

5.
For a graph G,P(G,λ)denotes the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent,denoted by G-H,if P(G,λ)=p(H,λ). Let[G]= {H|H-G}. If [G]={G},then G is said to be chromatically unique. For a complete 5-partite graph G with 5n vertices, define θ(G)=(a(G,6)-2^n 1-2^n-1 5)/2n-2,where a(G,6) denotes the number of 6-independent partitions of G. In this paper, the authors show that θ(G)≥0 and determine all graphs with θ(G)= 0, 1, 2, 5/2, 7/2, 4, 17/4. By using these results the chromaticity of 5-partite graphs of the form G-S with θ(G)=0,1,2,5/2,7/2,4,17/4 is investigated,where S is a set of edges of G. Many new chromatically unique 5-partite graphs are obtained.  相似文献   

6.
We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of maximum degree at most d on (1 − ε)n vertices, in terms of the expansion properties of G. As a result we show that for fixed d ≥ 2 and 0 < ε < 1, there exists a constant c = c(d, ε) such that a random graph G(n, c/n) contains almost surely a copy of every tree T on (1 − ε)n vertices with maximum degree at most d. We also prove that if an (n, D, λ)-graph G (i.e., a D-regular graph on n vertices all of whose eigenvalues, except the first one, are at most λ in their absolute values) has large enough spectral gap D/λ as a function of d and ε, then G has a copy of every tree T as above. Research supported in part by a USA-Israeli BSF grant, by NSF grant CCR-0324906, by a Wolfensohn fund and by the State of New Jersey. Research supported in part by USA-Israel BSF Grant 2002-133, and by grants 64/01 and 526/05 from the Israel Science Foundation. Research supported in part by NSF CAREER award DMS-0546523, NSF grant DMS-0355497, USA-Israeli BSF grant, and by an Alfred P. Sloan fellowship.  相似文献   

7.
Joyce trees have concrete realizations as J-trees of sequences of 0’s and 1’s. Algorithms are given for computing the number of minimal height J-trees of d-ary sequences with n leaves and the number of them with minimal parent passing numbers to obtain polynomials ρ n (d) for the full collection and α n (d) for the subcollection. The number of traditional Joyce trees is the tangent number α n (1); α n (2) is the number of cells in the canonical partition by Laflamme, Sauer and Vuksanovic of n-element subsets of the infinite random (Rado) graph; and ρ n (2) is the number of weak embedding types of rooted n-leaf J-trees of sequences of 0’s and 1’s. The author thanks the University of Tel Aviv for hospitality in April 2004 when much of this work was done.  相似文献   

8.
The chromatic number of the product of two 4-chromatic graphs is 4   总被引:1,自引:0,他引:1  
For any graphG and numbern≧1 two functionsf, g fromV(G) into {1, 2, ...,n} are adjacent if for all edges (a, b) ofG, f(a)g(b). The graph of all such functions is the colouring graph ℒ(G) ofG. We establish first that χ(G)=n+1 implies χ(ℒ(G))=n iff χ(G ×H)=n+1 for all graphsH with χ(H)≧n+1. Then we will prove that indeed for all 4-chromatic graphsG χ(ℒ(G))=3 which establishes Hedetniemi’s [3] conjecture for 4-chromatic graphs. This research was supported by NSERC grant A7213  相似文献   

9.
Summary Let {X n}n≧1 be a sequence of independent, identically distributed random variables. If the distribution function (d.f.) ofM n=max (X 1,…,X n), suitably normalized with attraction coefficients {αn}n≧1n>0) and {b n}n≧1, converges to a non-degenerate d.f.G(x), asn→∞, it is of interest to study the rate of convergence to that limit law and if the convergence is slow, to find other d.f.'s which better approximate the d.f. of(M n−bn)/an thanG(x), for moderaten. We thus consider differences of the formF n(anx+bn)−G(x), whereG(x) is a type I d.f. of largest values, i.e.,G(x)≡Λ(x)=exp (-exp(−x)), and show that for a broad class of d.f.'sF in the domain of attraction of Λ, there is a penultimate form of approximation which is a type II [Ф α(x)=exp (−x−α), x>0] or a type III [Ψ α(x)= exp (−(−x)α), x<0] d.f. of largest values, much closer toF n(anx+bn) than the ultimate itself.  相似文献   

10.
Assume that the leaves of a planted plane tree are enumerated from left to right by 1, 2, .... Thej-ths-turn of the tree is defined to be the root of the (unique) subtree of minimal height with leavesj, j+1, ...,j+s−1. If all trees withn nodes are regarded equally likely, the average level number of thej-ths-turn tends to a finite limitα s (j), which is of orderj 1/2. Thej-th ”s-hyperoscillation”α 1(j)−α s+1(j) is given by 1/2α 1(s)+O(j −1/2) and therefore tends (forj → ∞) to a constant behaving like √8/π·s 1/2 fors → ∞. These results are obtained by setting up appropriate generating functions, which are expanded about their (algebraic) singularities nearest to the origin, so that the asymptotic formulas are consequences of the so-called Darboux-Pólyamethod.  相似文献   

11.
We present a new explicit construction for expander graphs with nearly optimal spectral gap. The construction is based on a series of 2-lift operations. Let G be a graph on n vertices. A 2-lift of G is a graph H on 2n vertices, with a covering map π :HG. It is not hard to see that all eigenvalues of G are also eigenvalues of H. In addition, H has n “new” eigenvalues. We conjecture that every d-regular graph has a 2-lift such that all new eigenvalues are in the range (if true, this is tight, e.g. by the Alon–Boppana bound). Here we show that every graph of maximal degree d has a 2-lift such that all “new” eigenvalues are in the range for some constant c. This leads to a deterministic polynomial time algorithm for constructing arbitrarily large d-regular graphs, with second eigenvalue . The proof uses the following lemma (Lemma 3.3): Let A be a real symmetric matrix with zeros on the diagonal. Let d be such that the l1 norm of each row in A is at most d. Suppose that for every x,y ∈{0,1}n with ‹x,y›=0. Then the spectral radius of A is O(α(log(d/α)+1)). An interesting consequence of this lemma is a converse to the Expander Mixing Lemma. * This research is supported by the Israeli Ministry of Science and the Israel Science Foundation.  相似文献   

12.
Peter Frankl 《Combinatorica》1984,4(2-3):141-148
LetX be a finite set ofn elements and ℓ a family ofk-subsets ofX. Suppose that for a given setL of non-negative integers all the pairwise intersections of members of ℓ have cardinality belonging toL. Letm(n, k, L) denote the maximum possible cardinality of ℓ. This function was investigated by many authors, but to determine its exact value or even its correct order of magnitude appears to be hopeless. In this paper we investigate the case |L|=3. We give necessary and sufficient conditions form(n, k, L)=O(n) andm(n, k, L)≧O(n 2), and show that in some casesm(n, k, L)=O(n 3/2), which is quite surprising.  相似文献   

13.
Davenport—Schinzel sequences are sequences that do not contain forbidden subsequences of alternating symbols. They arise in the computation of the envelope of a set of functions. We show that the maximal length of a Davenport—Schinzel sequence composed ofn symbols is Θ (nα(n)), where α(n) is the functional inverse of Ackermann’s function, and is thus very slowly increasing to infinity. This is achieved by establishing an equivalence between such sequences and generalized path compression schemes on rooted trees, and then by analyzing these schemes. Work on this paper by the second author has been supported in part by a grant from the U.S.-Israeli Binational Science Foundation.  相似文献   

14.
Let P n be the order determined by taking a random graph G on {1, 2,..., n}, directing the edges from the lesser vertex to the greater (as integers), and then taking the transitive closure of this relation. We call such and ordered set a random graph order. We show that there exist constants c, and °, such that the expected height and set up number of P n are sharply concentrated around cn and °n respectively. We obtain the estimates: .565<c<.610, and .034<°<.289. We also discuss the width, dimension, and first-order properties of P n.  相似文献   

15.
We show that there is a function α(r) such that for each constantr≧3, almost everyr-regular graph onn vertices has a hole (vertex induced cycle) of size at least α(r)n asn→∞. We also show that there is a function β(c) such that forc>0 large enough,G n, p ,p=c/n almost surely has a hole of size at least β(c)n asn→∞.  相似文献   

16.
Letf(n) denote the minimal number of edges of a 3-uniform hypergraphG=(V, E) onn vertices such that for every quadrupleYV there existsYeE. Turán conjectured thatf(3k)=k(k−1)(2k−1). We prove that if Turán’s conjecture is correct then there exist at least 2 k−2 non-isomorphic extremal hypergraphs on 3k vertices.  相似文献   

17.
For a graphG let ℒ(G)=Σ{1/k contains a cycle of lengthk}. Erdős and Hajnal [1] introduced the real functionf(α)=inf {ℒ (G)|E(G)|/|V(G)|≧α} and suggested to study its properties. Obviouslyf(1)=0. We provef (k+1/k)≧(300k logk)−1 for all sufficiently largek, showing that sparse graphs of large girth must contain many cycles of different lengths.  相似文献   

18.
The distribution of the chromatic number on random graphsG n, p is quite sharply concentrated. For fixedp it concentrates almost surely in √n ω(n) consecutive integers where ω(n) approaches infinity arbitrarily slowly. If the average degreepn is less thann 1/6, it concentrates almost surely in five consecutive integers. Large deviation estimates for martingales are used in the proof.  相似文献   

19.
For a graphG withn vertices and average valencyt, Turán’s theorem yields the inequalityαn/(t+1) whereα denotes the maximum size of an independent set inG. We improve this bound for graphs containing no large cliques.  相似文献   

20.
A convex labelling of a tree is an assignment of distinct non-negative integer labels to vertices such that wheneverx, y andz are the labels of vertices on a path of length 2 theny≦(x+z)/2. In addition if the tree is rooted, a convex labelling must assign 0 to the root. The convex label number of a treeT is the smallest integerm such thatT has a convex labelling with no label greater thanm. We prove that every rooted tree (and hence every tree) withn vertices has convex label number less than 4n. We also exhibitn-vertex trees with convex label number 4n/3+o(n), andn-vertex rooted trees with convex label number 2n +o(n). The research by M. B. and A. W. was partly supported by NSF grant MCS—8311422.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号