首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Widely used chemical concepts like Pauli repulsion or hyperconjugation, and their role in determining rotation barriers or stereoelectronic effects, are analyzed from the real space perspective of the interacting quantum atoms approach (IQA). IQA emerges from the quantum theory of atoms in molecules (QTAIM), but is free from the equilibrium geometry constraint of the former. A framework with both electronically unrelaxed and relaxed wavefunctions is presented that leads to an approximate correspondence between the IQA concepts and those used in the EDA (energy decomposition analysis) or NBO (natural bond orbital) procedures. We show that no net force acts upon the electrons in an electronically relaxed system, so that any reasonable definition of Pauli repulsion must involve unrelaxed state functions. Using antisymmetrized fragments clarifies that Pauli repulsions are energetically connected to the IQA deformation energies, leaving footprints in the finally relaxed states. Similarly, EDA or NBO hyperconjugative stabilizations are found to be naturally related to the IQA electron delocalization patterns. Applications to the rotation barrier of ethane and other simple systems are presented, and the very often forgotten role of electrostatic contributions in determining preferred conformations is highlighted.  相似文献   

2.
The nature of H‐H interaction between ortho‐hydrogen atoms in planar biphenyl is investigated by two different atomic energy partitioning methods, namely fractional occupation iterative Hirshfeld (FOHI) and interacting quantum atoms (IQA), and compared with the traditional virial‐based approach of quantum theory of atoms in molecules (QTAIM). In agreement with Bader's hypothesis of H? H bonding, partitioning the atomic energy into intra‐atomic and interatomic terms reveals that there is a net attractive interaction between the ortho‐hydrogens in the planar biphenyl. This falsifies the classical view of steric repulsion between the hydrogens. In addition, in contrast to the traditional QTAIM energy analysis, both FOHI and IQA show that the total atomic energy of the ortho‐hydrogens remains almost constant when they participate in the H‐H interaction. Although, the interatomic part of atomic energy of the hydrogens plays a stabilizing role during the formation of the H? H bond, it is almost compensated by the destabilizing effects of the intra‐atomic parts and consequently, the total energy of the hydrogens remains constant. The trends in the changes of intra‐atomic and interatomic energy terms of ortho‐hydrogens during H? H bond formation are very similar to those observed for the H2 molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Calculations within the framework of the interacting quantum atoms (IQA) approach have shown that the interactions of the helium atom with both tertiary, tC, and secondary, sC, carbon atoms in the metastable He@adamantane (He@adam) endohedral complex are bonding in nature, whereas the earlier study performed within the framework of Bader’s quantum theory of atoms in molecules (QTAIM) revealed that only He???tC interactions are bonding. The He???tC and He???sC bonding interactions are shown to be forced by the high pressure that the helium and carbon atoms exert upon each other in He@adam. The occurrence of a bonding interaction between the helium and sC atoms, which are not linked by a bond path, clearly shows that the lack of a bond path between two atoms does not necessarily indicate the lack of a bonding interaction, as is asserted by QTAIM. IQA calculations showed that not only the destabilization of the adamantane cage, but also a huge internal destabilization of the helium atom, contribute to the metastability of He@adam, these contributions being roughly equal. This result disproves previous opinions based on QTAIM analysis that only the destabilization of the adamantane cage accounts for the endothermicity of He@adam. Also, it was found that there is no homeomorphism of the ρ( r ) and ‐v( r ) fields of He@adam. Comparison of the IQA and QTAIM results on the interactions in He@adam exposes other deficiencies of the QTAIM approach. The reasons for the deficiencies in the QTAIM approach are analyzed.  相似文献   

4.
5.
Open-shell reduced density matrix functional theory is established by investigating the domain of the exact functional. For spin states that are the ground state, a particularly simple set is found to be the domain. It cannot be generalized to other spin states. A number of conditions satisfied by the exact density matrix functional is formulated and tested for approximate functionals. The exact functional does not suffer from fractional spin error, which is the source of the static correlation error in dissociated molecules. We prove that a simple approximation (called the Buijse-Baerends functional, Mu?ller or square root functional) has a non-positive fractional spin error. In the case of the H atom the error is zero. Numerical results for a few atoms are given for approximate density and density matrix functionals as well as a recently developed range-separated combination of both.  相似文献   

6.
The Curtius rearrangement reaction is studied by using quantum theory of atoms in molecules (QTAIM) analysis of the electron density and the interacting quantum atoms (IQA) formalism. Although the rearrangements take place in one stage, two phases are distinguished when the rearranged atom is H: the first one corresponds to the separation of N2, and the second one to the N-H/C-H bond rearrangement. The transition state (TS) for the reaction does not represent an intermediate between reagent and product for the migration but for the isolation of the N2 molecule. When the migration is undergone by a fluorine atom, no electronic phases can be distinguished and the process is really concerted. As the migration happens closer to the TS, the TS is more similar to the product. The IQA analysis reveals different electron density evolutions for H and F migrations, and the scarce relevance (in terms of energy) of the point where BCPs appear or disappear.  相似文献   

7.
The notion of quasi-atoms is introduced within the context of the quantum theory of atoms in molecules. Being a subset of the quantum divided basins that were introduced previously, quasi-atoms are the quantum subsystems that are practically indistinguishable from the topological atoms; thus, revealing the continuous evolution of quantum divided basins into topological atoms. This indistinguishability is rooted in the limited accuracy of chemical observations; they are not sensitive to discriminate a topological atom from its associated quasi-atoms. In this regard, it is disclosed that the set of quantum atoms is in a wide-range including members other than topological atoms; the quasi-atoms are concrete examples. Finally, the idea of the fuzzy set of atoms that is foreign to the disjoint partitioning schemes for which the orthodox QTAIM is a classic example is extended employing the set of quasi-atoms.  相似文献   

8.
Interactions in dimers of model alkali metal derivatives M(2)X(2) (M = Li or Na or K; X = H or F, Cl, OH) are studied in the frame of the quantum theory of atoms in molecules (QTAIM) using the interacting quantum atoms approach (IQA). Contrary to opinion prevalent in QTAIM studies, the interaction between two anions linked by a bond path is demonstrated to be strongly repulsive. One may therefore say that a bond path does not necessarily indicate bonding interactions. The interactions between two anions or two cations that are not linked by a bond path are also strongly repulsive. The repulsive anion-anion and cation-cation interactions are outweighed by much stronger attractive anion-cation interactions, and the model molecules are therefore in a stable state. The attractive Ehrenfest forces (calculated in the frame of the QTAIM) acting across interatomic surfaces shared by anions in the dimers do not reflect the repulsive interactions between anions. Probable reasons of this disagreement are discussed. The force exerted on the nucleus and the electrons of a particular atom by the nucleus and the electrons of any another atom in question is proposed. It is assumed that this force unambiguously exposes whether basins of two atoms are attracted or repelled by each other in a polyatomic molecule.  相似文献   

9.
Interactions in dimers of model alkali metal derivatives M2X2 (M=Li or Na or K; X=H or F, Cl, OH) are studied in the frame of the quantum theory of atoms in molecules (QTAIM) using the interacting quantum atoms approach (IQA). Contrary to opinion prevalent in QTAIM studies, the interaction between two anions linked by a bond path is demonstrated to be strongly repulsive. One may therefore say that a bond path does not necessarily indicate bonding interactions. The interactions between two anions or two cations that are not linked by a bond path are also strongly repulsive. The repulsive anion–anion and cation–cation interactions are outweighed by much stronger attractive anion–cation interactions, and the model molecules are therefore in a stable state. The attractive Ehrenfest forces (calculated in the frame of the QTAIM) acting across interatomic surfaces shared by anions in the dimers do not reflect the repulsive interactions between anions. Probable reasons of this disagreement are discussed. The force exerted on the nucleus and the electrons of a particular atom by the nucleus and the electrons of any another atom in question is proposed. It is assumed that this force unambiguously exposes whether basins of two atoms are attracted or repelled by each other in a polyatomic molecule.  相似文献   

10.
Binding energies of first row diatomics are revisited within the interacting quantum atoms (IQA) approach. This is a formalism in chemical bonding theory based upon the quantum theory of atoms in molecules. It is characterized by the preservation of the energetic identity of atoms within molecules. Quantum mechanically computed binding energies are recovered in IQA as a sum of small atomic deformation energies and large pairwise interaction terms. We show how this partition responds faithfully to chemical intuition, and how the different evolution of deformations and interactions accounts in a unified manner for the subtle variations of the binding energy of these molecules.  相似文献   

11.
In the current study, the coordination chemistry of nine-coordinate Ac(III) complexes with 35 monodentate and bidentate ligands was investigated using density functional theory (DFT) in terms of their geometries, charges, reaction energies, and bonding interactions. The energy decomposition analysis with naturals orbitals for chemical valence (EDA-NOCV) and the quantum theory of atoms in molecules (QTAIM) were employed as analysis methods. Trivalent Ac exhibits the highest affinities toward hard acids (such as charged oxophilic donors, fluoride), so its classification as a hard acid is justified. Natural population analysis quantified the involvement of 5f orbitals on Ac to be about 30% of total valence electron natural configuration indicating that Ac is a member of the actinide series. Pearson correlation coefficients were used to study the pairwise correlations among the bond lengths, ΔG reaction energies, charges on Ac and donor atoms, and data from EDA-NOCV and QTAIM. Strong correlations and anticorrelations were found between Voronoi charges on donor atoms with ΔG, EDA-NOCV interaction energies and QTAIM bond critical point densities.  相似文献   

12.
The eigenvectors of the electronic stress tensor have been identified as useful for the prediction of chemical reactivity because they determine the most preferred directions to move the bonds. A new 3–D vector based interpretation of the chemical bond that we refer to as the bond-path framework set B provides a version of the quantum theory of atoms in molecules (QTAIM) beyond the minimum definition for bonding that is particularly suitable for understanding changes in molecular electronic structure that occur during reactions. We demonstrate that the most preferred direction for bond motion using the stress tensor corresponds to the most compressible direction and not to the least compressible direction as previously reported. We show the necessity for a directional approach constructed using the eigenvectors along the entire bond-length and demonstrate the insufficiency of scalar measures for capturing the nature of the stress tensor within the QTAIM partitioning.  相似文献   

13.
The potential relations between the measure of topological interatomic bonding—integrals of electron density with respect to internuclear axis over the corresponding quantum theory of atoms in molecules (QTAIM)-defined interatomic surface (IAS)—and interatomic exchange-correlation contributions from the interacting quantum atoms approach are discussed. The quantum chemical computations of 38 equilibrium diatomic systems at different levels of theory (HF, MP2, MP4SDQ, and CCSD) are invoked to support abstract considerations. Parameters of excellent correlations between IAS integrals and interatomic exchange-correlation energy are found by the optimization. The performance of these trends depends on the accuracy of the electronic correlation treatment. The resulting trends are a unique feature of equilibrium states, whereas more complicated dependencies are explored for several systems at non-equilibrium conditions. The relations of established trends with other IAS-based estimations of strength of bonding interactions between topological atoms and issues explored for multiatomic systems are briefly discussed.  相似文献   

14.
The influence of various small- and medium-size basis sets used in Hartree-Fock (HF) and density functional theory (DFT)/B3LYP calculations on results of quantum theory of atoms in molecules based (QTAIM-based) analysis of bond parameters is investigated for several single, double, and triple covalent bonds. It is shown that, in general, HF and DFT/B3LYP methods give very similar QTAIM results with respect to the basis set. The smallest 6-31G basis set and DZ-quality basis sets of Dunning type lead to poor results in comparison to those obtained by the most reliable aug-cc-pVTZ. On the contrary, 6-311++G(2df,2pd) and in a somewhat lesser extent 6-311++G(3df,3pd) basis sets give satisfactory values of QTAIM parameters. It is also demonstrated that QTAIM calculations may be sensitive for the method and basis set in the case of multiple and more polarized bonds.  相似文献   

15.
The quantum theory of atoms in molecules (QTAIM) provides a theoretical foundation to determine the properties of functional groups through additive atomic contributions. Many studies have used QTAIM in their analyses with a variety of electronic structure methods, but it is unknown if the properties measured using one model chemistry, the combination of the electronic structure method and basis set, can be compared to those measured by another. Here, we evaluate the sensitivity of QTAIM functional group and bond critical point properties using six functionals and seven basis sets. High-level B2PLYPD3-BJ/aug-cc-pV5Z reference values are provided for 116 functional groups and the property sensitivity with respect to these values are evaluated based on absolute deviations and by assessing linear relationships. Functional group properties, including charges, dipoles, quadrupoles and volumes, were found to be mostly insensitive to choice of computational model chemistry. However, due to structural and topological inconsistencies, the 6-31G(d) basis set is not recommended for use. Bond critical point properties varied with choice of model chemistry, but models incorporating hybrid functionals and triple-ζ basis sets provided values suitable for use in regression studies.  相似文献   

16.
The general formalism of an extended quantum theory of atoms in molecules (QTAIM) dealing with the multi-component quantum systems, composed of various types of quantum particles, is disclosed in this contribution. This novel methodology, termed as the multi-component QTAIM (MC-QTAIM), is able to deal with non-adiabatic ab initio wavefunctions extracting atoms in molecules quantifying their properties. It can also be applied to elucidate the AIM structure of exotic species and bound quantum systems consisting of fundamental elementary particles like positrons and muons. The formalism is based on the previously disclosed density combination idea that is extended to derive the multi-component subsystem hypervirial theorem as well as the extended subsystem energy functional. Through the extended subsystem variational procedure, inspired from Schrödinger’s original variational principle, the surface terms containing the flux of the current property densities are derived. Accordingly, the extended Gamma field is introduced during this variational procedure that is used as the basic scalar field in the topological analysis yielding atoms in molecules and their real space boundaries. The Gamma field is central to the MC-QTAIM, replacing the usual one-electron density employed in the orthodox QTAIM and corresponding topological analysis. Through the multi-component hypervirial theorem, various regional theorems are derived which are then used to quantify the mechanical properties of atoms in molecules; these include the force, virial, torque, power, continuity and current theorems. In order to demonstrate the capability of the formalism, isotopically asymmetric hydrogen molecules, HD, HT and DT as well as YX systems (Y = 6Li, 7Li; X = H, D, T) composed of electrons and two different nuclei, all treated equally as quantum waves instead of clamped particles, are analyzed within context of the MC-QTAIM. The resulting computational analysis demonstrates that the MC-QTAIM is able to yield reasonable topological structures similar to those observed previously for diatomic species within context of the orthodox QTAIM. The asymmetrical nature of these species, inherent in their non-Born–Oppenhiemer wavefunctions, manifests itself clearly in the MC-QTAIM analysis yielding two distinguishable atomic basins with different properties. These differences are rationalized generally by the observed electron transfer from one basin to the other. Finally, some possible future theoretical extensions are considered briefly.  相似文献   

17.
This contribution deals with the subsystem variational procedure within the context of the quantum theory of atoms in positronic molecules (QTAIPM). Before introducing the subsystem energy functional termed as joint subsystem energy functional, a novel notation and the combination strategy are disclosed in detail by restating the positronic subsystem hypervirial theorem. They are employed in proposing the proper subsystem energy functional, the validity of which is checked by various criteria. The zero flux surfaces of the joint density distribution are used to define the topological atoms in the positronic molecules, and they are incorporated into the subsystem variational procedure as proper real space boundary conditions. The variational procedure finally yields the flux of the joint current property density that also appears in the positronic subsystem hypervirial theorem. At every stage, the corresponding equations for the purely electronic systems within the context of the quantum theory of atoms in molecules (QTAIM) are presented to clearly reveal the analogy between these two formalisms and to emphasize the importance of combining the property density distributions in the QTAIPM. The presented material demonstrates the internal consistency of the whole framework and discloses the fact that the QTAIM must be regarded as a variant of the QTAIPM. Furthermore, this formalism promises an extended QTAIM, which is hoped to resolve the issue of molecular structure beyond the clamp nuclei approximation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
19.
Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well‐defined reference geometry. The localized‐orbital‐locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. © 2008 Wiley Periodicals, Inc.J Comput Chem, 2009.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号