首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abstract— Transient absorption spectra produced by laser flash-photolysis of an aqueous solution of ephedrine have been measured under a variety of conditions. Ephedrine was found to photoionise via a biphotonic process. The apparent yield of photoionisation increases with lowering of pH, a value of 8.8 being found for the p K a associated with this change. The cation radical absorption spectrum has been determined using the techniques of both pulse radiolysis and laser flash photolysis. The extinction coefficient of the cation at 295 nm was determined to be 1.37 × 104 dm3 mol-1 cm-1 and 1.2 × 104 dm3 mol-1cm-1 by the two techniques, respectively, at pH 11. It is also shown that the rate constant for electron abstraction by the azide radical to form the ephedrine cation is controlled by protonation of the amine group in the side chain. The ephedrine anion radical spectrum and its extinction coefficient at 305 nm were also determined. The excited states responsible for photoionisation and photodegradation are discussed.  相似文献   

2.
Abstract— The radical cations and anions of diphenylhexatriene have been produced and characterized in homogenous and micellar solutions by pulse radiolysis and laser flash photolysis techniques. Both types of radical ions were formed in cyclohexane on pulse radiolysis. The radical cation was formed in dichloroethane on pulse radiolysis, and by two photon photoionization in ethanol, dichloroethane, and various micelles. Both radical ions have intense ( 105 M -1 cm-1) absorption peaks at600–650nm. The cation peak occurs at slightly shorter wavelengths than that of the anion.
In micelles and vesicles the radical anion of carotene was formed by electron transfer from ea– on pulse radiolysis. The radical cation was formed on pulse radiolysis of micellar solutions containing Br-2 as counterion, presumably by electron transfer to Br2-. The spectra agree with those of the radical cation and anion of carotene that have previously been obtained in homogenous solutions (Dawe and Land, 1975).
Electron transfer in micelles and vesicles from the radical anion of biphenyl to carotene and diphenylhexatriene, and from the radical anions of these to inorganic acceptors has been studied.  相似文献   

3.
Abstract— Nanosecond laser flash photolysis and pulse radiolysis have been used to generate and characterise the triplet state, and semioxidised and semireduced radicals of haematoporphyrin, and three 0 -acyl compounds derived from it (the monoacetate, the diacetate and the disuccinate).
After 347 nm irradiation in water containing 2% Triton X-100, haematoporphyrin forms the triplet state (φT= 0.92) and photoionises monophotonically (φI= 0.03). For the O -acyl derivatives, φT approaches unity and photoionisation is reduced. In acetone the triplet yield of all four compounds are close to unity. The difference and corrected spectra for the triplet species are presented and decay rates ( k 1˜104s-1) and oxygen quenching constants ( k Q˜1.5times109 M -1s-1) for the triplet state have been measured. The difference and corrected spectra for the semi-reduced species in methanol and semi-oxidised species in aqueous Triton X-100 are presented.
The photophysical characteristics in fluid solution of haematoporphyrin and its 0 -acyl derivatives are rather similar to those previously recorded for other photosensitising porphyrins.  相似文献   

4.
Abstract— Upon e--pulse irradiation in nonprotic solvents, all- trans retinol (ROH) and retinylmethyl ether (ROMe) form transient species (τ= 0.5–7μs, λmax=575–590 nm) identifiable as radical anions. Similar species are also formed upon laser pulse photoexcitation of these retinyl derivatives in the presence of N,N-dimethylaniline in acetonitrile. In contrast, electron transfer or attachment to all- trans retinyl acetate (ROAc) and palmitate (ROPa) results in 'instantaneous' loss of carboxylate anions from electron adducts giving the retinylmethyl radical (R-, λmax= 395 nm, τk > 100 μ,s); the radical anions in these cases are too short-lived to be detected by nanosecond pulse radiolysis. The lifetimes of radical anions of ROH and ROMe are very sensitive to water and alcohols (e.g. kq = 107 M -1 s-1 with methanol as quencher for ROH- in tetrahydrofuran). Based on these findings, the spectral dissimilarity of the one-electron reduction products from ROH and ROAc in alcohols and aqueous micelles becomes explainable in terms of fast formation of protonated radical anions (RH(OH), τ1/2, > 100 μs, λmax=370–375 nm) in the case of ROH and of retinylmethyl radical via loss of AcO- from radical anion in the case of ROAc. In tetrahydrofuran, the complexation of ROH- with cations such as Na+ and Bu4N+ affects the relative importance of its major decay modes, namely, protonation and dehydroxylation, the latter process being significantly enhanced by the presence of Na+.  相似文献   

5.
Abstract— The photochemical interaction between 8-methoxypsoralen (8-MOP) and the melanin precursorL–3,4-dihydroxyphenylalanine(dopaH2) has been studied using laser flash photolysis. Triplet excited 8-MOP was thus found to abstract electrons from dopaH2 ( k ∼ 2 × 109 dm3 mol-1 s-1) to form semireduced 8-MOP and semioxidised dopaH2.The technique of pulse radiolysis was used to establish separately the spectra of (a) the semi-reduced form of 8-MOP at pH 6.5 and (b) the semioxidised forms of dopaH2 at pH 6.5, 5.8, 4.6 and 3.3. The corresponding λmax and extinction coefficients found were: for 8-MOP at pH 6.5, λmax= 350 nm (= 9050 dm3 mol-1 cm-1); for dopa at pH 6.5, λmax= 305 nm (ε= 12000 dm3 mol-1 cm-1) and for dopaH at pH 3.3, λ= 305 nm (ε= 5900 dm3 mol-1 cm-1).  相似文献   

6.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

7.
Photoinduced electron transfer (PET) from excited probes attached to proteins is of considerable current interest. Photochemical processes following 532 nm excitation of triphenyl methane dye, crystal violet (CV+) bound to a protein, bovine serum albumin (BSA), have been investigated in picosecond (ps) to microseconds (μs) time scales by flash photolysis technique. The excited singlet state lifetime of CV+ is found to be increased to 130 ps as compared to 1–5 ps for the unbound dye in low viscosity solvents. From flash photolysis studies in microsecond region, transient absorption in the region 650 nm is observed which is attributed to the dication radical CV√2+ formed by electron transfer from 3CV+* to BSA, contrary to electron transfer from BSA to the excited dye as proposed in a recent report. Supporting spectral evidence for the electron transfer from 3CV+* to BSA is obtained from pulse radiolysis studies.  相似文献   

8.
Abstract— –Flash photolysis at 450 nm over the temperature range 0.8–60°C was used to determine Arrhenius parameters for the first and second order disappearance of triplet lumiflavin (1.66 µ .M ) at a flash energy of 2 kj in deaerated phosphate buffer at varying pH:
3Lf → Lf0
3Lf +3Lf → Lf0+ Lf0
Arrhenius parameters were also determined for the pseudo first-order quenching of triplet lumiflavin by 10 µ M ferri- and ferrocyanide ions,
3Lf + Fe3+→ Fe3+→ Lf0+ Fe3+ (energy transfer)
3Lf + Fe2+→ Lf-+ Fe3+ (electron transfer)
and for disappearance of the semireduced lumiflavin in the presence of ferrocyanide at pH 6.8, by the second-order reaction
Lf-+Lf -→ Lf0+ Lf=.  相似文献   

9.
Abstract—Rate constants, k q , for the reaction of cationic and neutral acridine orange and 10-methylacridine orange triplet states (3AOH +, 3AO, 3MAO+) with a series of electron donors have been measured. Two different protolytic forms of the semireduced dye radical are produced by acridine orange triplet quenching at various pHM values in methanolic solution.
It is found that k 4 decreases with increasing oxidation potential of the reducing agent for all triplet states in a manner which is expected for electron transfer reactions. The different reactivities of the cationic and neutral triplet forms can, therefore, be attributed to the difference in reduction potentials of these species. The difference in reduction potentials is related to the p K M values of triplet state, p K TM , and semireduced dye radical, p K MS , by thermodynamic consideration. p K TM (3AOH+/3AO) is determined to be 11.2. From thisp K SM (AOH./AO;) is estimated to be 17–18. This is in striking contrast to the protolytic equilibrium of the semireduced dye radicals found to be pKF= 4.1. We conclude that the last value represents the second protonation equilibrium (AOH+2./AOH). This conclusion is confirmed by spectroscopic data.  相似文献   

10.
Abstract— Using pulse radiolysis techniques, 3 azapropazone and 3 phenylbutazone derivatives all structurally related to the potentially photosensitive anti-inflammatory drug, azapropazone, have been reacted with the free radical oxidants N3, Br2- and (SCN)2- as well as with e-aq a strong reductant. It is demonstrated that for 5 derivatives, azapropazone (Az), 2-[a-Carboxy-valeryll-3-dimethylamino-7-meth1-1,2-dihydro-1,2,4-benzotriazine (Mi307), phenylbutazone (PB), oxyphenylbutazone (OPB), and ketophenylbutazone (KPB), N3- and Br2- appear to react via a one-electron removal process. For the other derivative, 8-hydroxy azapropazone (8-OH-Az), Nj and (SCN); oxidise via a one-electron process, while Br2- probably fqrms a free radical adduct.
The absolute spectra of the one-electron oxidised and reduced transient species for all six derivatives are thus given in this work and are a basis to the understanding of the action of light on these drugs.  相似文献   

11.
The photochemistries of the melanin precursors dopa, 5-S-cysteinyldopa (5-SCD) and 2.5-S,S'-dicysteinyldopa (2.5-SCD) were investigated by 265-nm laser flash photolysis. The quantum yield of hydrated electron following flash photolysis of dopa (9.1%) was half the yield of dopasemiquinone (19.6%), implying that dopasemiquinone is formed via two primary photochemical mechanisms: photionisation (giving e) or photohomolysis (giving H˙). Dopasemiquinone rapidly disproportionates to form dopaquinone and re-form dopa. Dopaquinone in turn decays via a base-catalysed unimolecular cyclisation eventually to form dopachrome. Assignment of the transient species was confirmed by previous pulse radiolysis studies of the one-electron oxidation of dopa. In contrast, flash photolysis of the cysteinyldopas, 5-SCD and 2,5-SCD results in lower photoionisation quantum yields and the production of initial transient species whose absorption spectra were markedly different from their semiquinone absorption spectra previously determined pulse radiolytically. These observations indicate that the primary cysteinyldopa photochemical species is not such a semiquinone, but rather results from S-CH2 bond photohomolysis. Absorption spectra and rate constants for the formation and decay of various transient species are reported.  相似文献   

12.
Abstract— Radiolytic formation and peroxidation of fatty acid radicals have been investigated by pulse radiolysis techniques in oleate, linoleate, linolenate and arachidonate systems. A strong absorption band at 280 nm associated with conjugated radicals, Rconj, formed in polyunsaturated fatty acid moieties has been used as a probe for kinetic processes occurring at doubly allylic sites in the hydrocarbon chain. Formation of Rconj by O- has been found to be more efficient than the less selective OH radical. Peroxidation of Rconj is shown to be somewhat slower, ( k R+ O2˜ 3 × 108 M -1 s-1), than O2 reactions with radicals in oleate ( k R+ O2= 1 × 109 M -1 s-1). Peroxy radicals generated in these reactions disappear slowly by essentially second order processes (2 k RO1˜ 107 M -1 s-1). The superoxide radical, O-2, shows little if any reactivity towards 0.01 M linolenate or arachidonate over periods of 20 s.  相似文献   

13.
Abstract— Absorption spectra of triplets, radical anions and radical cations of four furocoumarins, psoralen (Ps), 8-methoxypsoralen (8MOP), 5-methoxypsoralen (5MOP) and 3-carbethoxypsoralen (3CPs), have been determined by laser flash photolysis and pulse radiolysis. The triplet spectra of 8MOP, 5MOP and 3CPs are strongly modified when going from an H-bonding solvent such as water to a non H-bonding solvent as benzene or acetonitrile while the triplet spectrum of Ps is solvent independent. Theoretical considerations using a CNDO/S method are able to explain the existence of these two different triplets. For 8MOP, 5MOP and 3CPs in water the triplets might be considered as triplet exciplexes 3(FCδ-. H2Oδ+) consistent with these triplet spectra being similar to the spectra of the corresponding radical anions.  相似文献   

14.
Abstract— The triplet states of biliverdin and biliverdin dimethyl ester have been generated using pulse radiolysis excitation. Biliverdin triplet was formed by energy transfer from biphenyl triplet in acetone, absorbed throughout the wavelength range studied (380–1000 nm) and had a half-life of 11.7μs under the cpnditions chosen. Biliverdin dimethyl ester triplet was formed by energy transfer from biphenyl triplet in benzene, likewise absorbed throughout the wavelength range studied (360–1000 nm) and had a half-life of 6.7μs under the conditions used. Both biliverdin and biliverdin dimethyl ester efficiently quench anthracene, naphthacene, but not μ-carotene, triplet states. On the other hand. neither μ-carotene nor oxygen were found to quench the triplet states of biliverdin or biliverdin dimethyl ester. Estimates or limits for the rate constants of all these quenching reactions were obtained. These reactivities suggest that the triplet levels of both biliverdin and biliverdin dimethyl ester lie around 90 kJ mol-1. The triplet energy transfer rate from bilirubin to biliverdin dimethyl ester in benzene was measured to be 1.9 × 109 M-1 s-1. The singlet-triplet intersystem crossing efficiencies of both molecules were very low, limits of 0.004 and 0.001 being found for biliverdin and biliverdin dimethyl ester, respectively, using 347 nm laser excitation.  相似文献   

15.
The one-electron reduction of 4,7-phenanthroline (P) in aqueous solutions at neutral pH has been further studied by pulse radiolysis. The spectral and kinetic properties of the transient formed due to the reaction of 4,7-phenanthroline with hydrated electron were investigated. The transient absorption spectrum obtained 5μs after the pulse exhibits a broad band with a λmax at 420 nm. The λmax is 10 nm blue shift compared with the absorption spectrum obtained at pH 2.9 where the reactant was the protonated form. The bimolecular'rate constant of the reaction of 4,7-phenanthroline with hydrated electron was 0etermined to be (2.2±0.1)×1010 dm3 mol−1 s−1. It was found that the decay of the transient was mainly following a first-order kinetics. The first-order decay rate constant was determined to be (1.25±0.1)×104s−1.  相似文献   

16.
Abstract— The spectra have been measured of the transient species formed in the nanosecond flash photolysis of aqueous solutions of sulphacetamide under a variety of conditions. In addition to the excited triplet state, the cation radical and the solvated electron were observed. The ionisation of aqueous sulphacetamide was found to occur by a biphotonic process. The extinction coefficient of the cation radical of sulphacetamide was determined by both laser flash photolysis and pulse radiolysis techniques, a value of 1.9 times 103 dm3mol-1cm-1 being obtained. The rate of electron reaction with sulphacetamide and the anion radical spectrum were also determined by the two techniques, good agreement being obtained. The spectrum of the product of the reaction of the superoxide anion radical and the corresponding rate constant have also been determined. A possible mechanism of photosensitized skin reaction due to sulphacetamide is discussed.  相似文献   

17.
Electron pulse radiolysis of four differently substituted amino derivatives of fluorenone, namely, 1-amino-, 2-amino- 3-amino-, and 4-aminofluorenone, has been carried out to study the effect of structure on the spectroscopic and kinetic characteristics of the triplet excited states as well as the transient free radical intermediates formed under reducing and oxidizing conditions. The triplet states of these compounds have been generated in benzene by pulse radiolysis and in other solvents by flash photolysis technique and their spectral and kinetic properties have been investigated. Hydrated electron (eaq) has been found to react with these fluorenone derivatives to form the anion radical species with a diffusion-controlled rate constant. The spectral and kinetic properties of the transient ketyl and anion radicals have been studied by generating them in aqueous solutions of suitable pH. The pKa values of ketylanion radical equilibria are in the range of 6.8–7.7 for these derivatives. The oxidized species have been generated by reaction with the azide radical. Hydrogen atom adducts as well as the cation radicals of these derivatives have also been generated by pulse radiolysis and characterized.  相似文献   

18.
Abstract— We have characterized the spectra, acidity constants and decay kinetics of the triplet and semireduced radical species of Safranin-O. Between pH 3.0 and 10.6, there are three triplet species denoted 3DH2 +2, 3DH+ and 3D, the p K as being 7.5 and 9.2. All three triplet species exhibit first order decay, the rate constant for 3DH+ being ca. 5-fold lower than the rate constants of 3DH+ and 3D. Ascorbic acid and ethylenediaminetetraacetic acid (EDTA) quench the triplet state under appropriate pH conditions and the pH dependencies of the yield of semireduced dye indicate that 3DH+ is more reactive than 3DH+ or 3D. With EDTA as the reducing agent, there is the additional requirement that at least one of the amino nitrogens be deprotonated to obtain a significant yield of semireduced dye. In these reactions, ascorbic acid is oxidized reversibly, but EDTA is oxidized irreversibly, so that with the latter reducing agent photolysis causes buildup of the leucodye, which on subsequent photolysis can reduce triplet state dye. With ascorbic acid as the reducing agent, the regeneration of the ground state dye is reversible, the decay of the semireduced radical being second order. In general, the transient photochemistry of Safranin-O resembles that of Thionine, the major difference being that the lifetimes of 3DH2 +2 and 3DH+ are much longer for Safranin-O than for Thionine.  相似文献   

19.
Abstract— Pulse radiolysis of flavin mononucleotide (FMN) solutions produce flavin semiquinone radicals. The equilibrium constant of radical formation was determined in the pH range2–7 as a function of flavin concentration. Several complex constants as well as the kinetics of equilibration were measured in this pH regime. The rate constant of the autoxidation of the free flavin mononucleotide semiquinone radical was determined to be (1 ± 0.5) × 104 M −1 s−1. It is shown that between pH 2 and 7 the direct reaction of the dihydroflavin with oxygen is negligibly slow compared to the rate of autocatalysis. The autoxidation of dihydroflavin is discussed in relation to electron transfer theory.  相似文献   

20.
Abstract— Triplet-triplet absorption spectra of a series of carotenoid pigments in benzene solution have been determined by pulse radiolysis experiments. The natural lifetimes in deaerated solution have also been measured. They fall in the range 2–10 µ s as found for other carotenoids under similar conditions. Pulsed laser (337 nm) excitation of benzene solutions containing oxygen, carotenoid and a photosensitized molecule (anthracene) showed the generation of absorption spectra of the triplet states. These absorptions decayed by first order kinetics in such a way as to indicate that they were formed in reactions with singlet oxygen, itself generated by interaction with the anthracene triplet state. Bimolecular rate constants for energy transfer from O*2 (1g), to carotenoid have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号