首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
本文讨论纳米精确度光学对准技术,以用于采用热固化树脂的微光学包装。为了达到一个快速固化过程,直接将微波能量作用于需要进行光学粘合的地方。然而常规微波加热技术,依赖于树脂和元件之间的高质量比。为了改进微光学包装中微量粘合剂的热吸收率,我们先将接合面抛光,再镀上金属薄层。这样一来,微波能量将被镀层快速吸收。为防止接合面过热,采用一个红外(IR)温度传感器,以监测粘合剂的温度。根据温度的高低,一个自动化的系统则可以调整微波的功率输出,以便达到相对恒定的固化温度。在快速固化过程中,预先调准好的微光系统,如光纤耦合器,将由于加热的不均匀性而不可避免地遭受干扰。为补偿这个副效应,开发了一个实时光学对准监控和反馈系统。以包装光纤耦合器为例,该系统可实时监测当粘舍剂由微波固化时器件的插入损失(IL)。我们采用的一种三维压电变换装置(PZT)可达到x-、y-和z-方向的的对准。该PZT的10nm调节精度可监测出0.004dB的IL敏感性。与常规的固化烤箱比较,该系统的微光学包装效率可提高150倍。由于采用实时监控和反馈系统,批量生产中产品的合格率也将大大改善。  相似文献   

2.
为研究陶瓷和金属微波烧结时的微观演化机理,从而为优化不同材料的烧结过程提供依据,本文采用同步辐射技术对陶瓷(SiC)和金属(Al)的微波烧结微结构演化过程进行实时、无损的观测,并结合有限元模拟分析两者的微结构演化特征及微观机理。通过滤波反投影等数字图像处理技术得到烧结过程中样品内部的二维、三维重建图像,清晰地观察到SiC和Al在颗粒表面和界面演化上存在差异。定量地统计了陶瓷和金属烧结颈相对尺寸与时间的双对数关系,并与陶瓷和金属双球模型的微波烧结模拟结果进行了对比。运用模拟分别对实验中的烧结颈和微观形貌演化进行分析,得出结论:陶瓷和金属微波烧结时的加热机制不同,分别为整体介质损耗加热和表面涡流损耗加热。陶瓷的整体加热将会在材料内部特别是界面产生较高的温度,而金属的表面加热使颗粒表面温度高于界面。由相应的加热机制产生的温度分布差异,将会对材料的物质扩散过程产生不同程度的影响,进而产生不同的微结构。  相似文献   

3.
Aluminum-oxide-hydroxide (AlOOH) is a clean and non-toxic flame retardant. There have been many trials for the fabrication of ultrafine AlOOH. Two main approaches exist for nano-AlOOH synthesis: reactive precipitation and batch hydrothermal synthesis. Both approaches are laborious and time consuming with poor control of particle morphology. We report on the novel continuous flow manufacture of AlOOH nanorods with controlled morphology (particle size and shape) by hydrothermal synthesis. AlOOH was harvested from its mother liquor (colloidal solution) using poly(acrylamide-co-acrylic acid) copolymer as a flocculating agent. The developed AlOOH shape and size, crystalline phase, thermal stability, and endothermic heat sink action were investigated by transmission electron microscopy, X-ray diffractometry, thermogravimetric analysis, and differential scanning calorimetry, respectively. The phase transition of AlOOH to Al2O3 was demonstrated by conducting different X-ray diffractometry scans from 400 to 700 °C. These results may provide an option for the continuous synthesis of nano-AlOOH as a clean and non-toxic flame retardant with excellent thermal stability. Consequently, enhanced flammability properties can be achieved at low solids loading.  相似文献   

4.
The preparation and behavior of powder stearin-based methyl ester sulfonates (MES) with the addition of builder as a glidant agent was studied. MES is an anionic surfactant and its performance is equivalent to petroleum-based linear alkylbenzene sulfonates (LAS), the workhorses of the detergent industry. At the same time, zeolites or soda ash were the alternative builders for non-phosphate-based detergent. The behavior of powder MES properties was measured in terms of morphology, particle size, cohesion, caking, and compaction. Before that, these palm stearin-based MES of carbon chain 16–18 with ratios of 98:2, 80:20, and 60:40 in flakes were ground using a high shear mixer by 23,000 rpm to produce powder particles. Decreasing the particle size of MES powder can reduce the powder's cohesion, caking, and compaction. The addition of zeolite or soda ash as a glidant in powdered MES can improve the caking behavior. The high stearic in MES greatly influenced getting fine particle powders and required more glidant agents. This powder MES with excellent powder characteristics can perform well as a bio-based cleaning product.  相似文献   

5.
ZSM-22 (TON) zeolite crystal morphology was successfully controlled using a microwave-assisted solvothermal fabrication method. Different co-solvents, including ethanol, 2-propanol, glycerol, and ethylene glycol, were also applied in the synthesis mixture. The effects of various parameters such as the aging time, the type and amount of co-solvent on the ZSM-22 crystal aspect ratio were investigated. When employing this microwave irradiation synthesis, a long aging time was crucial to obtain smaller and more uniform crystal sizes. The addition of co-solvent resulted in elongated ZSM-22 crystals, regardless of the actual co-solvent used, although ZSM-22 zeolite crystallinity was sensitive to the co-solvent type. In general, the use of a co-solvent stimulated the appearance of ZSM-5 zeolite as an impurity and the amount of this impurity was proportional to the concentration of co-solvent in the synthesis mixture.  相似文献   

6.
The effectiveness of internal heating for enhancing the drying of molded ceramics is evaluated by both modeling and experiments. In the theoretical analysis, three dimensional drying-induced strain–stress are modeled, and the numerical solutions show that the internal heating generates lower internal stress than continuous convective heating or intermittent convective heating. Microwave drying is examined experimentally to study the effect of internal heating on the drying behavior of a wet sample of a kaolin slab. The drying behavior is compared among three modes: microwave heating, hot air heating and radiation heating. The transient behavior of temperatures in microwave drying is quite different from conventional drying by external heating. In particular, the temperature of the slab drops once in the progress of drying. This phenomenon cannot be predicted adequately by a simple model of one-dimensional heat conduction and moisture diffusion accompanied with an internal heat generation rate given as a linear function of the moisture content. It should be noted that the temperature behavior takes place due to the combined interactions with internal evaporation of moisture by rise in internal vapor pressure and shift of impedance or interference in the applicator. Microwave heating with a constant power above 100 W results in sample breakage due to the internal vapor pressure. However, if the power is dynamically controlled so as to maintain the temperature less than the boiling point of water, the drying succeeds without any crack generation until completion with a significantly faster drying rate than drying in convective heating or in the oven.  相似文献   

7.
In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test.  相似文献   

8.
ZnO nanoparticles with very narrow size distribution were synthesized by coupling homogeneous precipitation with microemulsion under pulsed microwave heating. The conditions of preparing ZnO nanoparticles were investigated. The products were characterized with DTA, TGA, XRD, TEM and UV-Vis. The synthesized ZnO nanopartices had much stronger ultraviolet absorptivity than normal ZnO powders; the average size of products was sensitive to the variation of the power or duration of microwave irradiation.  相似文献   

9.
The microwave synthesis of MnC2O4·2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H2O4·2H2O) and Mn(OAc)2·4H2O solutions using a CATA-2R microwave reactor. Structural characterization was performed using X-ray diffraction (XRD), particle size and shape were analyzed using transmission electron microscopy (TEM). The chemical in the structures was investigated using electron paramagnetic resonance (EPR) as well as optical absorption spectra and near-infrared (NIR) spectroscopies. The nanocrystals produced with this method were pure and had a distorted rhombic octahedral structure.  相似文献   

10.
In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell’s equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell’s equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system.  相似文献   

11.
With the outbreak of COVID-19, disinfection protection has become a necessary measure to prevent infection. As a new type of disinfectant, potassium peroxymonosulfate compound salt (PMS) has the advantages of good bactericidal effect, non-toxicity, high safety and stability. However, the current PMS products with irregular particle shapes lead to poor flowability, high hygroscopicity, poor stability of reactive oxygen species (ROS) and serious caking problems. In this work, an agglomeration-dissolution mechanism was designed to prepare spherical PMS particles with large size (>300 μm) and high sphericity (up to 90%), effectively addressing the above problems. Shaping (dissolution and abrasion) is the key to improving sphericity, which is mainly controlled by the design of the heating mode, residence time and stirring rate. Compared with the irregular PMS particles, the large spherical particles present better flowability (angle of repose decreased by 35.80%, Carr's index decreased by 64.29%, Hausner's ratio decreased by 19.14%), lower hygroscopicity (decreased by 38.0%), lower caking ratio (decreased by 84.50%), and higher stability (the monthly loss of ROS was reduced by 61.68%). The agglomeration-dissolution mechanism demonstrates the crystallization, agglomeration, dissolution and abrasion process of inorganic salt crystals, providing an opportunity to prepare high-end inorganic crystal materials with high-quality morphologies.  相似文献   

12.
We present data and predictive models for the shear rheology of suspended zeolite particles in polymer solutions. It was found experimentally that suspensions of zeolite particles in polymer solutions have relative viscosities that dramatically exceed the Krieger–Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is due to the selective absorption of solvent molecules from the suspending polymer solution into zeolite pores. The effect raises both the polymer concentration in the suspending medium and the particle volume fraction in the suspension. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are increased. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating a solvent absorption parameter, α, into the Krieger–Dougherty model. We experimentally determined the solvent absorption parameter by comparing viscosity data for suspensions of porous and nonporous MFI zeolite particles. Our results are in good agreement with the theoretical pore volume of MFI particles.  相似文献   

13.
A mathematical model of multicomponent vacuum desorption, which occurs in the vacuum freeze drying process has been developed. Drying with conductive heating and constant contact surface temperature was considered. Pressure drop in the layer of the material to be dried was taken into account in the model formulation and process simulation. Equilibrium moisture content for pure water, toluene, and m-xylene and their two- and three-component mixtures on zeolite DAY 20F were described by means of the multitemperature extended Langmuir isotherm equation. Model equations were solved by the numerical method of lines. Moisture content and temperature distributions within the drying material were predicted from the model as a function of drying time.  相似文献   

14.
The working pair zeolite-water has very good characteristics for the heat pump application. It is non-poisonous, non-flammable and low-corrosive so that the use of a zeolite-water heat pump in the large field of domestic heating is very promising. The poor heat and mass transfer of the zeolite has to be considered by an appropriate design of the adsorber heat exchanger. Compact zeolite layers directly linked with the heat exchanger enable a high specific thermal output (thermal output related to the mass of zeolite) which is the main shortcoming of these machines. Additionally the coefficient of performance (COP) can be improved significantly by a modular design of the machine consisting of six to eight heat pump modules. Due to the periodical operating mode which is required by the zeolite-water pair the single module is built up in a simple way without any moving parts. The different modules, each of them operating in another phase of the sorption cycle, are connected in series by a heat transfer medium circuit so that a continuous thermal output together with high COP is achieved by this zeolite-water heat pump. First experimental investigations focus on the layout of the different components of the heat pump, e.g. the single module, the adsorber/desorber and the evaporator/condenser. The paper will present the design of these components as well as the design of the entire modular machine. Furthermore there will be a theoretical discussion of the COPs of the modular heat pump depending on the ambient temperature, on the number of modules and on the heating system. Received on 12 November 1998  相似文献   

15.
IntroductionNanometer-scalecrystallitesofvariousmetalsandnonmetalshaveattractedagreatdealofattentionoverthepastdecade.Forsuchcrystallites,thephysicalandchemicalpropertiesareheavilydependentonparticlesizeandshape,and,asaresult,thesematerialshaveawiderangeofapplications(Ai&Kang,2003).Monodispersefinenickelparticlesarerequiredforhightechnologyapplicationsinalkalinerechargeablebatteries,magneticrecordingmediaandchemicalcatalysts,etc.,suchasconductingandmagneticinks,andferrofluids(Glicksman,1984).…  相似文献   

16.
Heat transfer phenomena during processing materials with microwave energy   总被引:2,自引:0,他引:2  
This paper analyses transport phenomena that occur during microwave heating. In particular, a transient one-dimensional energy balance equation has been adopted to describe the heating of a body in a microwave cavity (single-mode applicator). In the energy balance, a kinetic term has been introduced to take into account released or absorbed heat due to chemical reaction. Thus, the energy equation has been coupled with a mass balance and the relevant initial and boundary conditions. Modeled heating profiles are shown to describe the energy transfer in different materials and, the influence, on the heating process, of the fluid-dynamics outside the microwave cavity is studied and discussed.  相似文献   

17.
NUMERICAL SIMULATION OF THE GROWTH OF NANOPARTICLES IN A FLAME CVD PROCESS   总被引:3,自引:0,他引:3  
The growth of titania nanoparticles in a flame CVD process has been simulated by computational fluid dynamics, based on the change rate of particle number density due to their collisions calculated from an integral collision kernel. The assumptions made on constant particle volume density nv (nd^3), constant density of particle surface area ns (nd^2), and constant entity nd^2.5 in coagulation process have been examined. Comparisons have been made on particle size distribution between measurement results and predictions from present model of particle growth and Kruis model of particle dynamics for titania nanoparticles synthesized by the flame CVD process. Effects of operational parameters such as O2 mole fraction and particle number density on mean particle size and size distribution have been discussed.  相似文献   

18.
We consider pattern formation in a chemotaxis model with a vanishing chemotaxis coefficient at high population densities. This model was developed in Hillen and Painter (2001, Adv. Appli. Math. 26(4), 280–301.) to model volume effects. The solutions show spatio-temporal patterns which allow for ultra-long transients and merging or coarsening. We study the underlying bifurcation structure and show that the existence time for the pseudo- structures exponentially grows with the size of the system. We give approximations for one-step steady state solutions. We show that patterns with two or more steps are metastable and we approximate the two-step interaction using asymptotic expansions. This covers the basic effects of coarsening/merging and dissolving of local maxima. These effects are similar to pattern dynamics in other chemotaxis models, in spinodal decomposition of Cahn–Hilliard models, or to metastable patterns in microwave heating models.Dedicated to Professor Shui-Nee Chow on the occasion of his 60th birthday  相似文献   

19.
方沸石大单晶及多晶粉饼力学性能的实验研究   总被引:2,自引:0,他引:2  
报道了采用纳米压痕硬度计和Instron仪器分别对方沸石ANA大单晶和方沸石ANA多晶粉饼进行的力学性能测试工作。在纳米压痕实验中可实时测得连续载荷和随载荷连续变化而变化的位移,得到载荷-位移曲线图。根据W.C.O live算法,利用接触刚度连续测量(CSM)技术,实现了ANA沸石的硬度、弹性模量随压痕深度变化的连续测量,得到了ANA沸石单晶的硬度、弹性模量分别为0.25GPa和4GPa。用Instron仪器测得ANA多晶粉饼的弹性模量值为125MPa。对ANA沸石大单晶和ANA沸石多晶粉饼的力学性能进行了比较。  相似文献   

20.
The particle dispersion characteristics in a confined swirling flow with a swirl number of approx. 0.5 were studied in detail by performing measurements using phase-Doppler anemometry (PDA) and numerical predictions. A mixture of gas and particles was injected without swirl into the test section, while the swirling airstream was provided through a co-flowing annular inlet. Two cases with different primary jet exit velocities were considered. For these flow conditions, a closed central recirculation bubble was established just downstream of the inlet.

The PDA measurements allowed the correlation between particle size and velocity to be obtained and also the spatial change in the particle size distribution throughout the flow field. For these results, the behaviour of different size classes in the entire particle size spectrum, ranging from about 15 to 80 μm, could be studied, and the response of the particles to the mean flow and the gas turbulence could be characterized. Due to the response characteristics of particles with different diameters to the mean flow and the flow turbulence, a considerable separation of the particles was observed which resulted in a streamwise increase in the particle mean number diameter in the core region of the central recirculation bubble. For the lower particle inlet velocity (i.e. low primary jet exit velocity), this effect is more pronounced, since here the particles have more time to respond to the flow reversal and the swirl velocity component. This also gave a higher mass of recirculating particle material.

The numerical predictions of the gas flow were performed by solving the time-averaged Navier-Stokes equations in connection with the well known kε turbulence model. Although this turbulence model is based on the assumption of isotropic turbulence, the agreement of the calculated mean velocity profiles compared to the measured gas velocities is very good. The gas-phase turbulent kinetic energy, however, is considerably underpredicted in the initial mixing region. The particle dispersion characteristics were calculated by using the Lagrangian approach, where the influence of the particulate phase on the gas flow could be neglected, since only very low mass loadings were considered. The calculated results for the particle mean velocity and the mass flux are also in good agreement with the experiments. Furthermore, the change in the particle mean diameter throughout the flow field was predicted approximately, which shows that the applied simple stochastic dispersion model also gives good results for such very complex flows. The variation of the gas and particle velocity in the primary inlet had a considerable impact on the particle dispersion behaviour in the swirling flow and the particle residence time in the central recirculation bubble, which could be determined from the numerical calculations. For the lower particle inlet velocity, the maximum particle size-dependence residence time within the recirculation region was considerably shifted towards larger particles.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号