首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Pincer complexes can act as catalysts in organic transformations and have potential applications in materials, medicine and biology. They exhibit robust structures and high thermal stability attributed to the tridentate coordination of the pincer ligands and the strong σ metal–carbon bond. Nickel derivatives of these ligands have shown high catalytic activities in cross‐coupling reactions and other industrially relevant transformations. This work reports the crystal structures of two polymorphs of the title NiII POCOP pincer complex, [Ni(C29H41N2O8P2)Cl] or [NiCl{C6H2‐4‐[OCOC6H4‐3,5‐(NO2)2]‐2,6‐(OPtBu2)2}]. Both pincer structures exhibit the NiII atom in a distorted square‐planar coordination geometry with the POCOP pincer ligand coordinated in a typical tridentate manner via the two P atoms and one arene C atom via a C—Ni σ bond, giving rise to two five‐membered chelate rings. The coordination sphere of the NiII centre is completed by a chloride ligand. The asymmetric units of both polymorphs consist of one molecule of the pincer complex. In the first polymorph, the arene rings are nearly coplanar, with a dihedral angle between the mean planes of 27.9 (1)°, while in the second polymorph, this angle is 82.64 (1)°, which shows that the arene rings are almost perpendicular to one another. The supramolecular structure is directed by the presence of weak C—H…O=X (X = C or N) interactions, forming two‐ and three‐dimensional chain arrangements.  相似文献   

2.
In the title compound, [Cu(C4H6N2O3)(C8H8N2)]·3H2O, the CuII atom is coordinated in a square‐planar manner by one O atom and three N atoms from glycylglycinate and 2‐methyl­benzimidazole ligands. The ternary complexes assemble into one‐dimensional chains through C—H⋯π inter­actions and direct N—H⋯O hydrogen bonding, as well as into hydrogen‐bonded water helices with branches which also link the complex chains into a three‐dimensional supra­molecular structure.  相似文献   

3.
In the crystal structure of the title compound, C12H9N4O+·ClO4, the protonated cation adopts a cis‐I conformation and approximately planar geometry. Each perchlorate anion acts as the acceptor of three C—H⋯O weak interactions, which, together with N—H⋯N and C—H⋯N hydrogen bonds between the protonated cations, extend this structure into a three‐dimensional hydrogen‐bonded network.  相似文献   

4.
Owing to increasing interest in the use of N‐heterocyclic carbenes (NHCs) based on imidazolidinium ions as ligands in the design of highly efficient transition‐metal‐based homogeneous catalysts, the characterizations of the 1‐ferrocenylmethyl‐3‐(2,4,6‐trimethylbenzyl)imidazolidin‐3‐ium iodide salt, [Fe(C5H5)(C19H24N2)]I, (I), and the palladium complex trans‐bis(3‐benzyl‐1‐ferrocenylmethyl‐1H‐imidazolidin‐2‐ylidene)diiodidopalladium(II), [Fe2Pd(C5H5)2(C16H17N2)2I2], (II), are reported. Compound (I) has two iodide anions and two imidazolidinium cations within the asymmetric unit (Z′ = 2). The two cations have distinctly different conformations, with the ferrocene groups orientated exo and endo with respect to the N‐heterocyclic carbene. Weak C—H donor hydrogen bonds to both the iodide anions and the π system of the mesitylene group combine to form two‐dimensional layers perpendicular to the crystallographic c direction. Only one of the formally charged imidazolidinium rings forms a near‐linear hydrogen bond with an iodide anion. Complex (II) shows square‐planar coordination around the PdII metal, which is located on an inversion centre (Z′ = 0.5). The ferrocene and benzyl substituents are in a transanti arrangement. The Pd—C bond distance between the N‐heterocyclic carbene ligands and the metal atom is 2.036 (7) Å. A survey of related structures shows that the lengthening of the N—C bonds and the closure of the N—C—N angle seen here on metal complexation is typical of similar NHCs and their complexes.  相似文献   

5.
2‐Aminopyrimidine (L1) and 2‐amino‐4,6‐dimethylpyrimidine (L2) have been used to create the two novel title complexes, [Ag2(NCS)2(C4H5N3)]n, (I), and [Ag(NCS)(C6H9N3)]n, (II). The structures of complexes (I) and (II) are mainly directed by the steric properties of the ligands. In (I), the L1 ligand is bisected by a twofold rotation axis running through the amine N atom and opposite C atoms of the pyrimidine ring. The thiocyanate anion adopts the rare μ3‐κ3S coordination mode to link three tetrahedrally coordinated AgI ions into a two‐dimensional honeycomb‐like 63 net. The L1 ligands further extend the two‐dimensional sheet to form a three‐dimensional framework by bridging AgI ions in adjacent layers. In (II), with three formula units in the asymmetric unit, the L2 ligand bonds to a single AgI ion in a monodentate fashion, while the thiocyanate anions adopt a μ3‐κ1N2S coordination mode to link the AgL2 subunits to form two‐dimensional sheets. These layers are linked by N—H...N hydrogen bonds between the noncoordinated amino H atoms and both thiocyanate and pyrimidine N atoms.  相似文献   

6.
The title compound, [Cu(C9H13N5O2)(CH4O)](NO3)2, consists of square‐planar cationic complex units where the CuII centre is coordinated by an N,N′,O‐tridentate pyridoxal–aminoguanidine Schiff base adduct and a methanol molecule. The tridentate ligand is a zwitterion exhibiting an almost planar conformation. The dihedral angles between the mean planes of the pyridoxal ring and the six‐ and five‐membered chelate rings are all less than 2.0°. The charge on the complex cation is neutralized by two nitrate counter‐ions. Extensive N—H...O and C—H...O hydrogen bonding connects these ionic species and leads to the formation of layers. The pyridoxal hydroxy groups are the only fragments that deviate significantly from the flat layer structure; these groups are involved in O—H...O hydrogen bonding, connecting the layers into a three‐dimensional crystal structure.  相似文献   

7.
The title compound, [Co(C7H5O3)2(C6H6N2O)2(H2O)2], forms a three‐dimensional hydrogen‐bonded supramolecular structure. The CoII ion is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(8), R22(12) and R22(14) rings, which lead to two‐dimensional chains. An extensive three‐dimensional supramolecular network of C—H...O, N—H...O and O—H...O hydrogen bonds and C—H...π interactions is responsible for crystal structure stabilization. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed‐ligand metal complexes.  相似文献   

8.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

9.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

10.
The bimetallic title complex, [CuFe(CN)5(C12H30N6O2)(NO)] or [Cu(L)Fe(CN)5(NO)] [where L is 1,8‐bis(2‐hydroxy­ethyl)‐1,3,6,8,10,13‐hexa­aza­cyclo­tetra­decane], has a one‐dimensional zigzag polymeric –Cu(L)–NC–Fe(NO)(CN)3–CN–Cu(L)– chain, in which the CuII and FeII centres are linked by two CN groups. In the complex, the CuII ion is coordinated by four N atoms from the L ligand [Cu—N(L) = 1.999 (2)–2.016 (2) Å] and two cyanide N atoms [Cu—N = 2.383 (2) and 2.902 (3) Å], and has an elongated octahedral geometry. The FeII centre is in a distorted octahedral environment, with Fe—N(nitroso) = 1.656 (2) Å and Fe—C(CN) = 1.938 (3)–1.948 (3) Å. The one‐dimensional zigzag chains are linked to form a three‐dimensional network via N—H⋯N and O—H⋯N hydrogen bonds.  相似文献   

11.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

12.
The zinc(II) pseudohalide complexes {[Zn(L334)(SCN)2(H2O)](H2O)2}n ( 1 ) and [Zn(L334)(dca)2]n ( 2 ) were synthesized and characterized using the ligand 3,4‐bis(3‐pyridyl)‐5‐(4‐pyridyl)‐1,2,4‐triazole (L334) and ZnCl2 in presence of thiocyanate (SCN) and dicynamide [dca, N(CN)2] respectively. Single‐crystal X‐ray structural analysis revealed that the central ZnII atoms in both complexes have similar octahedral arrangement. Compound 1 has a 2D sheet structure bridged by bidentate L334 and double μN,S‐thiocyanate anions, whereas complex 2 , incorporating with two monodentate dicynamide anions, displays a two‐dimensional coordination framework bridged by tetradentate L334 ligand. Structural analysis demonstrated that the influence of pseudohalide anions plays an important role in determining the resultant structure. Both complexes were characterized by IR spectroscopy, microanalysis, and powder X‐ray diffraction techniques. In addition, the solid fluorescence and thermal stability properties of both complexes were investigated.  相似文献   

13.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

14.
In the two title copper(II) complexes, [CuL(C5H7O2)]n, (I), and [CuL′(C5H7O2)], (II), respectively, where HL is 4‐hydroxy‐3‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O3, and HL′ is 4‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O2, the CuII ions display a highly Jahn–Teller‐distorted octahedral and a square‐planar coordination geometry, respectively. In complex (I), two neighbouring CuII atoms are bridged by L and acetylacetonate, alternately, giving rise to a one‐dimensional chain of CuN2O4 octahedra interconnected by these two ligands along the a axis. In addition, the hydroxy H atom of the vanillin group connects to the carboxyl O atom of the adjacent chain via an O—H...O hydrogen bond, giving rise to a three‐dimensional supramolecular assembly. Complex (II) displays a discrete structure.  相似文献   

15.
1H‐1, 3‐Benzazaphospholes react with M(CO)5(THF) (M = Cr, Mo, W) to give thermally and relatively air stable η1‐(1H‐1, 3‐Benzazaphosphole‐P)M(CO)5 complexes. The 1H‐ and 13C‐NMR‐data are in accordance with the preservation of the phosphaaromatic π‐system of the ligand. The strong upfield 31P coordination shift, particularly of the Mo and W complexes, forms a contrast to the downfield‐shifts of phosphine‐M(CO)5 complexes and classifies benzazaphospholes as weak donor but efficient acceptor ligands. Nickelocene reacts as organometallic species with metalation of the NH‐function. The resulting ambident 1, 3‐benzazaphospholide anions prefer a μ2‐coordination of the η5‐CpNi‐fragment at phosphorus to coordination at nitrogen or a η3‐heteroallyl‐η5‐CpNi‐semisandwich structure. This is shown by characteristic NMR data and the crystal structure analysis of a η5‐CpNi‐benzazaphospholide. The latter is a P‐bridging dimer with a planar Ni2P2 ring and trans‐configuration of the two planar heterocyclic phosphido ligands arranged perpendicular to the four‐membered ring.  相似文献   

16.
Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration.  相似文献   

17.
The title compound, [Cd(C3H6NO5P)(H2O)2]n, is a three‐dimensional polymeric complex. The asymmetric unit contains one Cd atom, one N‐(phosphono­methyl)glycine zwitterion [(O)2OPCH2NH2+CH2COO] and two water mol­ecules. The coordination geometry is a distorted CdO6 octa­hedron. Each N‐(phosphono­methyl)glycine ligand bridges four adjacent water‐coordinated Cd cations through three phospho­nate O atoms and one carboxyl­ate O atom, like a regular PO43− group in zeolite‐type frameworks. One‐dimensional zigzag (–O—P—C—N—C—C—O—Cd–)n chains along the [101] direction are linked to one another via Cd—O—P bridges and form a three‐dimensional network motif with three types of channel systems. The variety of O—H⋯O and N—H⋯O hydrogen bonds is likely to be responsible for stabilizing the three‐dimensional network structure and preventing guest mol­ecules from entering into the channels.  相似文献   

18.
The title complex, [Co(C15H12N3O2S)2], consists of an octahedrally coordinated CoII ion, with two crystallographically independent 1,4‐dibenzoylthiosemicarbazidate ligands in a tridentate mer coordination [Co—O = 2.064 (3)–2.132 (3) Å and Co—N = 2.037 (3)–2.043 (3) Å]. There are intermolecular N—H...S hydrogen bonds involving one ligand and strong π–π stacking interactions involving the other ligand, resulting in a three‐dimensional supramolecular framework. The hydrogen bonds and π–π interactions, as well as different intramolecular aryl–benzamide H—C...H(—N) distances, give rise to a difference in conformation between the two ligands.  相似文献   

19.
The Schiff base 1‐benzyl‐N ‐(3,5‐di‐tert ‐butylsalicylidene)piperidin‐4‐amine (HL) and its acetatopalladium(II) complex having the formula [Pd(L)(OAc)] were synthesized. Both HL and [Pd(L)(OAc)] were characterized using elemental analysis and various spectroscopic (infrared, UV–visible, 1H NMR and 13C NMR) and mass spectrometric measurements. The molecular structure of the complex was determined using X‐ray crystallographic analysis. In the complex, the pincer‐like NNO‐donor L and the monodenate OAc provide a distorted square‐planar N2O2 coordination environment around the metal centre. The physicochemical properties and the spectroscopic features of [Pd(L)(OAc)] are consistent with its molecular structure. The complex was found to be an effective catalyst for the Suzuki–Miyaura cross‐coupling reactions of hydroxyaryl halides with arylboronic acids in predominantly aqueous media. The reactions afforded hydroxybiaryl products in good to excellent yields with a wide substrate scope.  相似文献   

20.
As part of a study on the effect of different counter‐anions on the self‐assembly of coordination complexes, a new dinuclear AgI complex, [Ag2(C14H12N4)2](CF3SO3)2, with the 3‐[3‐(2‐pyridyl)pyrazol‐1‐ylmethyl]pyridine (L) ligand was obtained through the reaction of L with AgCF3SO3. In this complex, each AgI center in the centrosymmetric dinuclear complex cation is coordinated by two pyridine and one pyrazole N‐atom donor of two inversion‐related L ligands in a trigonal planar geometry. This forms a unique box‐like cyclic dimer with an intramolecular nonbonding Ag...Ag separation of 6.379 (7) Å. Weak Ag...CF3SO3 and C—H...X (X = O and F) hydrogen‐bonding interactions, together with π–π stacking interactions, link the complex cations along the [001] and [10] directions, respectively, generating two different one‐dimensional chains and then an overall two‐dimensional network of the complex running parallel to the (110) plane. Comparison of the structural differences with previous findings suggests that the presence of different counter‐anions plays an important role in the construction of such supramolecular frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号