首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecule of N,N′‐bis(4‐pyridylmethyl)oxalamide, C14H14N4O2, (I) or 4py‐ox, has an inversion center in the middle of the oxalamide group. Adjacent molecules are then linked through intermolecular N—H...N and C—H...O hydrogen bonds, forming an extended supramolecular network. 4,4′‐{[Oxalylbis(azanediyl)]dimethylene}dipyridinium dinitrate, C14H16N4O22+·2NO3, (II), contains a diprotonated 4py‐ox cation and two nitrate counter‐anions. Each nitrate ion is hydrogen bonded to four 4py‐ox cations via intermolecular N—H...O and C—H...O interactions. Adjacent 4py‐ox cations are linked through weak C—H...O hydrogen bonding between an α‐pyridinium C atom and an oxalamide O atom, forming a two‐dimensional extended supramolecular network.  相似文献   

2.
In both title compounds, C18H24N2O2, (Ia), and C18H26N2O22+·2ClO4, (II), respectively, the two aryl rings are strictly parallel, with an inversion centre lying at the mid‐point of each central CH2—CH2 bond. Molecules in (Ia) are linked into two‐dimensional layers by N—H...O hydrogen bonds. The component ions in (II) are joined together by a combination of N/O/C—H...O hydrogen bonds and C—H...π and anion...π interactions, forming a three‐dimensional network. A structural understanding of (Ia) and (II) may provide some useful information about how and why their metal–organic complexes display various biological activities and function in catalytic processes.  相似文献   

3.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

4.
The title complex, [CuNi(C13H16N3O3)(C10H8N2)2(H2O)]ClO4, has a cis‐oxamide‐bridged heterobinuclear cation, with a Cu...Ni separation of 5.3297 (6) Å, counterbalanced by a disordered perchlorate anion. The CuII and NiII cations are located in square‐pyramidal and octahedral coordination environments, respectively. The complex molecules are assembled into a three‐dimensional supramolecular structure through hydrogen bonds and π–π stacking interactions. The influence of the two types of metal cation on the supramolecular structure is discussed.  相似文献   

5.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

6.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

7.
The title compound, {[Ni(C9H4O6)(C14H14N4)]·0.41H2O}n, exhibits a three‐dimensional hydrogen‐bonded supramolecular framework. The NiII cation is six‐coordinated in a distorted triangular prism defined by two N atoms from two 1,3‐bis(imidazol‐l‐ylmethyl)benzene (bix) ligands and four O atoms from two 5‐carboxybenzene‐1,3‐dicarboxylate (HBTC) dianions. The bix molecules and HBTC dianions both act as bidentate ligands, linking the NiII cations to form a one‐dimensional coordination polymer. A two‐dimensional wave‐like net is constructed by O—H...O hydrogen bonds linking adjacent chains. Partially occupied solvent water molecules fill the cavities and link these layers to form a three‐dimensional supramolecular structure via O—H...O hydrogen bonds. The title compound was also characterized by powder X‐ray diffraction and thermogravimetric analysis.  相似文献   

8.
A novel metal–organic framework, {[Zn2Cl4(C25H24N4O4)]·4C3H7NO}n, has been synthesized solvothermally by assembling the semi‐rigid tetrahedral ligand tetrakis[(pyridin‐4‐yl)oxymethyl]methane (tpom) and zinc nitrate in dimethylformamide (DMF). The crystal structure is noncentrosymmetric (P21c). Each ZnII cation has a tetrahedral coordination environment (C2 symmetry), which is formed by two chloride ligands and two pyridine N atoms from two tpom ligands. The tetrahedral tetradentate tpom linker has a quaternary C atom located on the crystallographic axis. This linker utilizes all the peripheral pyridine N atoms to connect four ZnII cations, thereby forming a wave‐like two‐dimensional sheet along the c axis. The two‐dimensional layer can be topologically simplified as a typical uninodal 4‐connected sql/Shubnikov net, which is represented by the Schläfli symbol {44,62}. Adjacent layers are further packed into a three‐dimensional structure by C—H...Cl hydrogen bonds.  相似文献   

9.
Crystallization of N,N′‐dimethylpyrazinediium bis(tetrafluoroborate), C6H10N22+·2BF4, (I), and N,N′‐diethylpyrazinediium bis(tetrafluoroborate), C8H14N22+·2BF4, (II), from dried acetonitrile under argon protection has permitted their single‐crystal studies. In both crystal structures, the pyrazinediium dications are located about an inversion center (located at the ring center) and each pyrazinediium aromatic ring is π‐bonded to two centrosymmetrically related BF4 anions. Strong anion–π interactions, as well as weak C—H...F hydrogen bonds, between BF4 and pyrazinediium ions are present in both salts.  相似文献   

10.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

11.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

12.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

13.
The title compounds, tris(1,10‐phenanthroline‐κ2N,N′)iron(II) bis(2,4,5‐tricarboxybenzoate) monohydrate, [Fe(C12H8N2)3](C10H5O8)2·H2O, (I), and tris(2,2′‐bipyridine‐κ2N,N′)iron(II) 2,5‐dicarboxybenzene‐1,4‐dicarboxylate–benzene‐1,2,4,5‐tetracarboxylic acid–water (1/1/2), [Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O, (II), were obtained during an attempt to synthesize a mixed‐ligand complex of FeII with an N‐containing ligand and benzene‐1,2,4,5‐tetracarboxylic acid via a solvothermal reaction. In both mononuclear complexes, each FeII metal ion is six‐coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10‐phenanthroline or 2,2′‐bipyridine ligands. In compound (I), the FeII atom lies on a twofold axis in the space group C2/c, whereas (II) crystallizes in the space group P21/n. In both compounds, the uncoordinated carboxylate anions and water molecules are linked by typical O—H...O hydrogen bonds, generating extensive three‐dimensional hydrogen‐bond networks which surround the cations.  相似文献   

14.
The title compound, C25H35N3O2, is a novel urea derivative. Pairs of intermolecular N—H...O hydrogen bonds join the molecules into centrosymmetric R22(12) and R22(18) dimeric rings, which are alternately linked into one‐dimensional polymeric chains along the [010] direction. The parallel chains are connected via C—H...O hydrogen bonds to generate a two‐dimensional framework structure parallel to the (001) plane. The title compound was also modelled by solid‐state density functional theory (DFT) calculations. A comparison of the molecular conformation and hydrogen‐bond geometry obtained from the X‐ray structure analysis and the theoretical study clearly indicates that the DFT calculation agrees closely with the X‐ray structure.  相似文献   

15.
In the crystal structure of the title complex, [Cu2(C10H20N4O2)(C10H8N2)2](ClO4)2, the deprotonated dmaeoxd2− ligand {H2dmaeoxd is N,N′‐bis[2‐(dimethylamino)ethyl]oxamide} occupies an inversion centre at the mid‐point of the central C—C bond and is thus in a trans conformation. The two CuII atoms are located in slightly distorted square‐based pyramidal environments. The binuclear units interact with each other viaπ–π interactions to form a one‐dimensional chain extending in the c direction.  相似文献   

16.
The title complex, [Cu4(C11H10N3O4)2(C6H6N4S2)2](C6H2N3O7)2, consists of a circular tetracopper(II) cation with an embedded inversion centre and two uncoordinated picrate (2,4,6‐trinitrophenolate) anions. The CuII cations at the inner sites of N‐(2‐aminoethyl)‐N′‐(2‐carboxylatophenyl)oxamidate(3−) (oxbe) have square‐planar environments and those at the outer sites are in square‐pyramidal geometries. The separations of pairs of CuII cations bridged by cis‐oxamide and carboxylate groups are 5.2217 (5) and 5.2871 (5) Å, respectively. The tetracopper(II) cations and picrate anions are connected by N—H...O hydrogen bonds into a two‐dimensional network parallel to the (010) plane, and these two‐dimensional networks are assembled by two types of π–π stacking interactions into a three‐dimensional supramolecular structure.  相似文献   

17.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

18.
In the crystal structure of the title complex, [Ni2(C10H20N4O2)(C12H12N2)2](ClO4)2 or [Ni(dmaeoxd)Ni(dmbp)2](ClO4)2 {H2dmaeoxd is N,N′‐bis­[2‐(dimethyl­amino)ethyl]oxamide and dmbp is 4,4′‐dimethyl‐2,2′‐bipyridine}, the deprotonated dmaeoxd2− ligand is in a cis conformation and bridges two NiII atoms, one of which is located in a slightly distorted square‐planar environment, while the other is in an irregular octa­hedral environment. The cation is located on a twofold symmetry axis running through both Ni atoms. The dmaeoxd2− ligands inter­act with each other via C—H⋯O hydrogen bonds and π–π inter­actions, which results in an extended chain along the c axis.  相似文献   

19.
The two title proton‐transfer compounds, 5‐methylimidazolium 3‐carboxy‐4‐hydroxybenzenesulfonate, C4H7N2+·C7H5O6S, (I), and bis(5‐methylimidazolium) 3‐carboxylato‐4‐hydroxybenzenesulfonate, 2C4H7N2+·C7H5O6S2−, (II), are each organized into a three‐dimensional network by a combination of X—H...O (X = O, N or C) hydrogen bonds, and π–π and C—H...π interactions.  相似文献   

20.
The title complex, bis[μ3cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidato(3−)]‐1:2:4κ7N,N′,N′′,O:O′,O′′:O′′′;2:3:4κ7O′′′:N,N′,N′′,O:O′,O′′‐bis(2,2′‐bipyridine)‐2κ2N,N′;4κ2N,N′‐dichlorido‐1κCl,3κCl‐tetracopper(II) dihydrate, [Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2O, consists of a neutral cyclic tetracopper(II) system having an embedded centre of inversion and two solvent water molecules. The coordination of each CuII atom is square‐pyramidal. The separations of CuII atoms bridged by cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidate(3−) and carboxyl groups are 5.2096 (4) and 5.1961 (5) Å, respectively. A three‐dimensional supramolecular structure involving hydrogen bonding and aromatic stacking is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号