首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystals of brucinium 3,5‐dinitro­benzoate methanol solvate, C23H27N2O4+·C7H3N2O6·CH3OH, (I), brucinium 3,5‐dinitro­benzoate methanol disolvate, C23H27N2O4+·C7H3N2O6·2CH3OH, (II), and brucinium 3,5‐dinitro­benzoate trihydrate, C23H27N2O4+·C7H3N2O6·3H2O, (III), were obtained from methanol [for (I) and (II)] or ethanol solutions [for (III)]. The brucinium cations and 3,5‐dinitro­benzoate anions are linked by ionic N—H+⋯O hydrogen bonds. In the crystals of (I), (II) and (III), the brucinium cations exhibit different modes of packing, viz. corrugated ribbons, pillars and corrugated monolayer sheets, respectively. While in (III), the amide O atom of the brucinium cation participates in O—H⋯O hydrogen bonds, in which water mol­ecules are the donors, in (I) and (II), the amide O atom of the brucinium cation is involved in weak C—H⋯O hydrogen bonds and other brucinium cations are the donors.  相似文献   

2.
In strychninium 4‐chloro­benzoate, C21H23N2O2+·C7H4ClO2, (I), and strychninium 4‐nitro­benzoate, C21H23N2O2+·C7H4NO4, (II), the strychninium cations form pillars stabilized by C—H⋯O and C—H⋯π hydrogen bonds. Channels between the pillars are occupied by anions linked to one another by C—H⋯π hydrogen bonds. The cations and anions are linked by ionic N—H+⋯O and C—H⋯X hydrogen bonds, where X = O, π and Cl in (I), and O and π in (II).  相似文献   

3.
The title adduct, C5H14N22+·C8H3NO62−·C8H5NO6·H2O, crystallizes in the monoclinic space group P21. All O atoms of the 4‐nitro­phthalate anions and neutral 4‐nitro­phthalic acid mol­ecules are involved in hydrogen bonding with the piperazine dication and the water mol­ecule of crystallization.  相似文献   

4.
Comparison of the structures of strychninium N‐phthaloyl‐β‐alaninate N‐phthaloyl‐β‐alanine, C21H23N2O2+·C11H8NO4·C11H9NO4, and brucinium N‐phthaloyl‐β‐alaninate 5.67‐hydrate, C23H27N2O4+·C11H8NO4·5.67H2O, reveals that, unlike strychninium cations, brucinium cations display a tendency to produce stacking inter­actions with cocrystallizing guests.  相似文献   

5.
The structures of two brucinium (2,3‐dimeth­oxy‐10‐oxostrychnidinium) salts of the α‐hydr­oxy acids l ‐malic acid and l ‐tartaric acid, namely brucinium hydrogen (S)‐malate penta­hydrate, C23H27N2O4+·C4H5O5·5H2O, (I), and anhydrous brucinium hydrogen (2R,3R)‐tartrate, C23H27N2O4+·C4H5O6,(II), have been determined at 130 K. Compound (I) has two brucinium cations, two hydrogen malate anions and ten water mol­ecules of solvation in the asymmetric unit, and forms an extensively hydrogen‐bonded three‐dimensional framework structure. In compound (II), the brucinium cations form the common undulating brucine sheet substructures, which accommodate parallel chains of head‐to‐tail hydrogen‐bonded tartrate anion species in the inter­stitial cavities.  相似文献   

6.
In the crystal structures of the proton‐transfer compounds of strychnine with 3,5‐dinitro­salicylic acid, namely strychninium 3,5‐dinitro­salicylate, C21H23N2O2+·C7H3N2O7, (I), and 5‐nitro­salicylic acid, namely strychninium–5‐nitro­salicylate–5‐nitro­salicylic acid (1/1/2), C21H23N2O2+·C7H4NO5·2C7H5NO5, (II), protonation of one of the N atoms of the strychnine mol­ecule occurs and this group is subsequently involved in inter­molecular hydrogen‐bonding inter­actions. In (I), this is four‐centred, the primary being with an adjacent strychninium carbonyl O‐atom acceptor in a side‐to‐side inter­action giving linear chains. Other inter­actions are with the phenolate and nitro O‐atom acceptors of the anionic species, resulting in a one‐dimensional polymer structure. In (II), the N+—H inter­action is three‐centred, the hydrogen bonding involving carboxyl O‐atom acceptors of the anion and both acid adduct species, giving unique discrete hetero‐tetramer units. The structure of (II) also features π‐bonding inter­actions between the two acid adduct mol­ecules.  相似文献   

7.
In the title complex, the 1:1 ionic adduct of hexa­methyl­enetetraminium and 2,4,6‐tri­nitro­phenolate, C6H13N4+·­C6H2N3O7?, the cation acts as a donor for bifurcated hydrogen bonds to the O atoms of the phenolate and one of the nitro groups of the 2,4,6‐tri­nitro­phenolate anion. The crystal structure is built from sheets of cations and anions, and is stabilized by intermolecular C—H?O and C—H?π interactions.  相似文献   

8.
Five two‐component molecular crystals, benzimidazolium 3‐nitro­benzoate, C7H7N2+·C7H4NO4?, (I), benzimidazolium 4‐nitro­benzoate, C7H7N2+·C7H4NO4?, (II), 1H‐benzotriazole–3‐nitro­benzoic acid (1/1), C6H5N3·C7H5NO4, (III), imidazol­ium 3‐nitro­benzoate, C3H5N2+·C7H4NO4?, (IV), and imid­azolium 4‐nitro­benzoate, C3H5N2+·C7H4NO4?, (V), were prepared with the aim of making chiral crystals. Only (I) crystallizes in a chiral space group. The mol­ecules of (I) and (II) are linked by hydrogen bonds to form 21 spiral chains. In (III), (IV) and (V), macrocyclic structures are formed from two acid and two base components, by an alternate arrangement of the acid and base moieties.  相似文献   

9.
In the ternary title compound, catena‐poly­[[silver(I)‐μ‐ethylenedi­amine‐κ2N:N′] 3‐nitro­benzoate monohydrate], {[Ag(C2H8N2)](C7H4NO4)·H2O}n, the Ag atom is bicoordinated in a linear configuration by two different N atoms from two symmetry‐related ethyl­enedi­amine ligands, thus giving linear polymeric chains with an [–Ag—N—C—C—N–]n backbone running parallel to the a axis. In the crystal packing, these linear chains are interconnected by N—H⃛O and O—H⃛O hydrogen bonds to form layers parallel to the ab plane.  相似文献   

10.
The crystal structure of the title compound, C6H7N2O2+·NO3, is built up from 4‐nitro­anilinium cations and nitrate anions. The NO2 group is coplanar with the aryl ring, which shows significant distortion from the ideal hexagonal form. The NO3 anion is planar but shows distortion from the C3h symmetry that is predicted by molecular orbital calculations. Two of the three O atoms of the NO3 group are involved in hydrogen bonds as acceptors.  相似文献   

11.
The structural data for sodium 2‐hydroxy‐5‐nitro­benzyl­sulfonate monohydrate, Na+·C7H6NO6S?·H2O, which mimics an artificial substrate for human aryl­sulfatase A, viz. p‐­nitrocatechol sulfate, reveal that the geometric parameters of the substrate and its analogue are very similar. Two water mol­ecules, the phenolic O atom and three sulfonate O atoms form the coordination sphere of the Na+ ion, which is a distorted octahedron. The Na+ cations and the O atoms join to form a chain polymer.  相似文献   

12.
The structure of brucinium dihydrogen citrate trihydrate (systematic name: 2,3‐dimeth­oxy‐10‐oxostrychnidinium dihydrogen citrate trihydrate), C23H27N2O4+·C6H7O7·3H2O, has been determined at 130 K. The crystallographic asymmetric unit comprises two brucinium cations, two dihydrogen citrate anions and six water mol­ecules of solvation. The two citrate anions, which are conformationally dissimilar, associate through extensive hydrogen‐bonding inter­actions with the common undulating brucinium cation layer substructures and the water mol­ecules, forming a three‐dimensional framework polymer.  相似文献   

13.
The title compound, [Zn(C7H4NO4)2(C12H8N2)(H2O)], has been synthesized. X‐Ray analysis reveals that it is a neutral zinc(II) mononuclear carboxyl­ate complex based on mixed N‐ and O‐donor ligands. The Zn atom is five‐coordinate in a distorted trigonal–bipyramidal coordination environment involving two O atoms of two monodentate 2‐nitro­benzoate mol­ecules, two N atoms of a 1,10‐phenanthroline mol­ecule and one O atom of a water mol­ecule. The axial positions are occupied by a carboxyl­ate O atom from the 2‐nitro­benzoate ligand and an N atom from the 1,10‐phenanthroline ligand [N—Zn—O = 167.66 (9)°].  相似文献   

14.
In the title adduct, 1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]dec­ane–4‐nitro­benzene‐1,2‐diol–water (1/2/1), C6H12N4·2C6H5NO4·H2O, the hexa­methyl­ene­tetra­mine mol­ecule acts as an acceptor of intermolecular O—H?N hydrogen‐bonding interactions from the water mol­ecule and the hydroxy groups of one of the two symmetry‐independent 4‐nitro­catechol mol­ecules. The structure is built from molecular layers which are stabilized by three intermolecular O—H?O, two intermolecular O—H?N and four intermolecular C—H?O hydrogen bonds. The layers are further interconnected by one additional intermolecular O—H?N and two intermolecular C—H?O hydrogen bonds.  相似文献   

15.
In the title compound, 2C8H18NO3+·2C7H6NO2·3H2O, proton transfer occurs from the carboxylic acid group of the 4‐amino­benzoic acid (PABA) mol­ecule to the amine group of the macrocycle, resulting in the formation of a salt‐like adduct. The anions are combined into helical chains which are further bound by the water mol­ecules into sheets. The macrocyclic cations are situated between these layers and are bound to the anions both directly and via bridging water mol­ecules. The structure exhibits a diverse system of hydrogen bonding.  相似文献   

16.
In the title compound, C9H18NO+·NO3, the piperidinium ring adopts a slightly deformed chair conformation and the nitrate anion is disordered. The ions are arranged in hydrogen‐bonded chains parallel to [001], in which the cations alternate with the anions. The intra­chain hydrogen bonds are bifurcated and link the O atoms of the anions to the N atoms of the cations.  相似文献   

17.
In the three title crystal structures 4‐(di­methyl­amino)­pyridinium 2,4‐di­nitro­benzoate, (I), 4‐(di­methyl­amino)­pyri­dinium 3,4‐di­nitro­benzo­ate, (II), and 4‐(di­methyl­amino)pyri­din­ium 3,5‐di­nitro­benzo­ate, (III), all C7H11N2+·C7H3N2O6?, the ions are connected by an N—H?O hydrogen bond. Dihedral angles between the pyridine and phenyl rings are 69.9 (1), 26.7 (1) and 56.2 (1)° in (I), (II) and (III), respectively. Donor–acceptor π–π stacking is observed in (II) and (III), but not in (I).  相似文献   

18.
In the title ternary complex, C10H9N2+·C7H3N2O6?·C7H4N2O6, the pyridinium cation adopts the role of the donor in an intermolecular N—H?O hydrogen‐bonding interaction with the carboxyl­ate group of the 3,5‐di­nitro­benzoate anion. The mol­ecules of the ternary complex form molecular ribbons perpendicular to the b direction, which are stabilized by one N—H?O, one O—H?O and five C—H?O intermolecular hydrogen bonds. The ribbons are further interconnected by three intermolecular C—H?O hydrogen bonds into a three‐dimensional network.  相似文献   

19.
In the title compounds, C7H8NO2+·NO3, (I), C7H8NO2+·ClO4·H2O, (II), and 2C7H8NO2+·SO42−, (III), the carboxyl planes of the 4‐carboxy­phenyl­ammonium cations are twisted from the aromatic plane. A homonuclear C(8) hydrogen‐bonding motif of 4‐carboxy­phenyl­ammonium cations is observed in both (I) and (II), leading to `head‐to‐tail' layers. The cations in (III) form carboxyl group dimers, making a graph‐set motif of R22(8). In all the structures, anions connect the cationic layers and an infinite chain running along the c axis is observed, having the C22(6) graph‐set motif. Inter­estingly, in (II), the anions are connected through weak hydrogen bonds involving the water mol­ecules, leading to a graph‐set motif of R44(12). Alternate hydro­phobic and hydro­philic layers are observed in all three compounds as a result of the column‐like arrangement of the aromatic rings of the cations and the anions. Furthermore, in (I), head‐to‐tail N—H⋯O inter­actions and inter­actions linking the cations and anions form an R64(16) hydrogen‐bonding motif, resulting in a pseudo‐inversion centre at (, , 0).  相似文献   

20.
The crystal structures of the four isomeric organic salts 4‐amino­pyridinium 2‐chloro‐4‐nitro­benzoate, (I), 4‐amino­pyridinium 2‐chloro‐5‐nitro­benzoate, (II), 4‐amino­pyridinium 5‐chloro‐2‐nitro­benzoate, (III), and 4‐amino­pyridinium 4‐chloro‐2‐nitro­benzoate, (IV), all C5H7N2+·C7H3ClNO4?, are presented. Compound (I) has one intramolecular hydrogen bond, one intermolecular C—H?O hydrogen bond and π–π‐stacking interactions. Compound (II) has N—H?O, C—H?O and C—H?Cl hydrogen bonds, and Cl?O—C electrostatic interactions. Compound (III) has N—H?O and C—H?O hydrogen bonds. Compound (IV) has a π–π‐stacking interaction, but no C—H?O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号