首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
Molecules of (E)‐3‐(2‐chloro‐6‐methylquinolin‐3‐yl)‐1‐(5‐iodo‐2‐thienyl)prop‐2‐en‐1‐one, C17H11ClINOS, (I), and (E)‐3‐(2‐chloro‐6‐methylquinolin‐3‐yl)‐1‐(5‐methyl‐2‐furyl)prop‐2‐en‐1‐one, C18H14ClNO2, (II), adopt conformations slightly twisted from coplanarity. Both structures are devoid of classical hydrogen bonds. However, nonclassical C—H...O/N interactions [with C...O = 3.146 (5) Å and C...N = 3.487 (3) Å] link the molecules into chains extended along the b axis in (I) and form dimers with an R22(8) motif in (II). The structural analysis of these compounds provides an insight into the correlation between molecular structures and intermolecular interactions in compounds for drug development.  相似文献   

2.
(E)‐2‐(2‐Benzylidenehydrazinylidene)quinoxaline, C15H12N4, crystallized with two molecules in the asymmetric unit. The structures of six halogen derivatives of this compound were also investigated: (E)‐2‐[2‐(2‐chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)‐2‐[2‐(3‐chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)‐2‐[2‐(4‐chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)‐2‐[2‐(2‐bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4; (E)‐2‐[2‐(3‐bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4; (E)‐2‐[2‐(4‐bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4. The 3‐Cl and 3‐Br compounds are isomorphous, as are the 4‐Cl and 4‐Br compounds. In all of these compounds, it was found that the supramolecular structures are governed by similar predominant patterns, viz. strong intermolecular N—H...N(pyrazine) hydrogen bonds supplemented by weak C—H...N(pyrazine) hydrogen‐bond interactions in the 2‐ and 3‐halo compounds and by C—H...Cl/Br interactions in the 4‐halo compounds. In all compounds, there are π–π stacking interactions.  相似文献   

3.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

4.
(2SR,4RS)‐7‐Chloro‐2‐exo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16ClNO, (I), crystallizes as a racemic twin in the space group P21 and the molecules are linked into a chain of edge‐fused R33(9) rings by a combination of C—H...O and C—H...N hydrogen bonds. The diastereoisomer (2RS,4RS)‐7‐chloro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), also crystallizes as a racemic twin, but in the space group P212121, and a two‐centre C—H...N hydrogen bond and a three‐centre C—H...(O,N) hydrogen bond combine to link the molecules into a complex chain of rings. In (2R,4R)‐7‐fluoro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16FNO, (III), which is not isomorphous with (II), the molecules are linked by a single C—H...O hydrogen bond into simple chains, but the molecular arrangements in (II) and (III) are nonetheless very similar. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

5.
Methyl 2‐benzamido‐4‐(3,4‐dimethoxyphenyl)‐5‐methylbenzoate, C24H23NO5, (Ia), and N‐{5‐benzoyl‐2‐[(Z)‐2‐methoxyethenyl]‐4‐methylphenyl}benzamide, C24H21NO3, (IIa), were formed via a Diels–Alder reaction of appropriately substituted 2H‐pyran‐2‐ones and methyl propiolate or (Z)‐1‐methoxybut‐1‐en‐3‐yne, respectively. Each of these cycloadditions might yield two different regioisomers, but just one was obtained in each case. In (Ia), an intramolecular N—H...O hydrogen bond closes a six‐membered ring. A chain is formed due to aromatic π–π interactions, and a three‐dimensional framework structure is formed by a combination of C—H...O and C—H...π(arene) hydrogen bonds. Compound (IIa) was formed not only regioselectively but also chemoselectively, with just the triple bond reacting and the double bond remaining unchanged. Compound (IIa) crystallizes as N—H...O hydrogen‐bonded dimers stabilized by aromatic π–π interactions. Dimers of (IIa) are connected into a chain by weak C—H...π(arene) interactions.  相似文献   

6.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

7.
The carboxyl­ic acid group and the double bond are coplanar in (E)‐3‐(benzoxazol‐2‐yl)­prop‐2‐enoic acid, C10H7NO3, whereas in isomeric (Z)‐3‐(benzoxazol‐2‐yl)­prop‐2‐enoic acid, also C10H7NO3, they are almost orthogonal. In both isomers, a strong O—H⋯N hydrogen bond, with the carboxyl­ic acid group as a donor and the pyridine‐like N atom as an acceptor, and weak C—H⋯O interactions contribute to the observed supramolecular structures, which are completed by π–π stacking interactions between oxazole and benzenoid rings.  相似文献   

8.
(2SR,4RS)‐7‐Fluoro‐2‐exo‐(2‐furyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H12FNO2, (I), crystallizes with Z′ = 2 in the space group P21/c. A combination of three C—H...O hydrogen bonds and one C—H...N hydrogen bond links the molecules into a complex chain of rings, and pairs of such chains are linked into a tube‐like structure by two C—H...π(arene) hydrogen bonds. There are no hydrogen bonds in the structure of racemic (2SR,4RS)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐fluoro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrFNOS, (II), while the molecules of (2S,4R)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14BrF3NO2S, (III), are linked into sheets by a combination of two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The significance of this study lies in its observation of the wide variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

9.
Structures are reported for two matched sets of substituted 4‐styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1‐(2‐aminophenyl)‐3‐arylprop‐2‐en‐1‐ones with 1,3‐dicarbonyl compounds. (E)‐3‐Acetyl‐4‐[2‐(4‐methoxyphenyl)ethenyl]‐2‐methylquinoline, C21H19NO2, (I), (E)‐3‐acetyl‐4‐[2‐(4‐bromophenyl)ethenyl]‐2‐methylquinoline, C20H16BrNO, (II), and (E)‐3‐acetyl‐2‐methyl‐4‐{2‐[4‐(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C—H…O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C—H…π(arene) hydrogen bond to form a chain of rings; hence, (I)–(III) are not strictly isostructural. By contrast with (I)–(III), no two of ethyl (E)‐4‐[2‐(4‐methoxyphenyl)ethenyl]‐2‐methylquinoline‐3‐carboxylate, C22H21NO3, (IV), ethyl (E)‐4‐[2‐(4‐bromophenyl)ethenyl]‐2‐methylquinoline‐3‐carboxylate, C21H18BrNO2, (V), and ethyl (E)‐2‐methyl‐4‐{2‐[4‐(trifluoromethyl)phenyl]ethenyl}quinoline‐3‐carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C—H…O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C—H…π(pyridyl) hydrogen bond, while that in (VI) contains two independent C—H…O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.  相似文献   

10.
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.  相似文献   

11.
(2SR,4RS)‐2‐exo‐Phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H15NO, (I), (2SR,4RS)‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (II), and (2SR,4RS)‐2‐exo‐(3‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C17H17NO, (III), all crystallize with Z′ = 2, in the space groups Cc, P21/n and P21/c, respectively. In each of (II) and (III), the conformations of the two independent molecules are significantly different. The molecules in (I) are linked by C—H...π(arene) hydrogen bonds to form two independent chains, each containing only one type of molecule. The molecules in (II) are linked into sheets by a combination of C—H...O, C—H...(N,O) and C—H...π(arene) hydrogen bonds, all of which link pairs of molecules related by inversion, while in (III), the molecules are linked into sheets by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds. There are no direction‐specific intermolecular interactions of any kind in the structure of (2SR,4RS)‐7‐bromo‐2‐exo‐phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14BrNO, (IV), but in the structure of (2SR,4RS)‐2‐exo‐(4‐bromophenyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13BrClNO, (V), a combination of one C—H...N hydrogen bond and one C—H...O hydrogen bond links the molecules into sheets of alternating centrosymmetric R22(14) and R66(22) rings. Comparisons are made with the structures of a number of related compounds.  相似文献   

12.
This analysis of the title compound, C13H13F2IO3, establishes the orientation of (E)‐5‐(CH=CH—I) as antiperiplanar (ap) to the C—C bond (5–6 position) of the 2,4‐di­fluoro­phenyl ring system, with the (E)‐5‐(CH=CH—I) H atom located in close proximity (2.17 Å) to the F4 atom of the 2,4‐di­fluoro­phenyl moiety.  相似文献   

13.
It has been observed that when electron‐rich naphthyl rings are present in chalcones they can participate in π–π stacking interactions, and this can play an important role in orientating inhibitors within the active sites of enzymes, while chalcones containing heterocyclic substituents additionally exhibit fungistatic and fungicidal properties. With these considerations in mind, three new chalcones containing 2‐naphthyl substituents were prepared. 3‐(4‐Fluorophenyl)‐1‐(naphthalen‐2‐yl)prop‐2‐en‐1‐one, C19H13FO, (I), crystallizes with Z ′ = 2 in the space group P and the four molecules in the unit cell adopt an arrangement which resembles that in the space group P 21/a . Although 3‐(4‐bromophenyl)‐1‐(naphthalen‐2‐yl)prop‐2‐en‐1‐one, C19H13BrO, (II), with Z ′ = 1, is not isostructural with (I), the molecules of (I) and (II) adopt very similar conformations. In 1‐(naphthalen‐2‐yl)‐3‐(thiophen‐2‐yl)prop‐2‐en‐1‐one, C17H12OS, (III), the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.780 (3) and 0.220 (3), which are related by a near 180° rotation of the thiophene unit about its exocyclic C—C bond. The molecules of compound (I) are linked by three independent C—H…π(arene) hydrogen bonds to form centrosymmetric octamolecular aggregates, whereas the molecules of compound (II) are linked into molecular ladders by a combination of C—H…π(arene) and C—Br…π(arene) interactions, and those of compound (III) are linked into centrosymmetric dimers by C—H…π(thiophene) interactions.  相似文献   

14.
The crystal structure of 5‐fluoro‐1‐octanoyl­uracil [5‐fluoro‐1‐octanoyl­pyrimidine‐2,4(1H,3H)‐dione, C12H17FN2O3], a lipophilic prodrug of 5‐fluoro­uracil, is described. The 5‐fluoro­pyrimidine‐2,4(1H,3H)‐dione moiety is similar to the known structure of 1‐acetyl‐5‐fluoro­uracil. The 1‐octanoyl group and the 5‐fluoro­uracil moiety are essentially coplanar, with the octanoyl carbonyl group oriented towards the the ring C—H group and away from the nearer ring carbonyl group. The torsion angle C—N—C—O (from the ring CH group to the octanoyl carbonyl group) of 9.2 (2)° is similar to the corresponding torsion angles reported for 1‐acetyl‐5‐fluoro­uracil (17.3 and 1.6°) and 1,3‐di­acetyl‐5‐fluoro­uracil (8.8°).  相似文献   

15.
Four compounds are reported, all of which lie along a versatile reaction pathway which leads from simple carbonyl compounds to terphenyls. (2E)‐1‐(2,4‐Dichlorophenyl)‐3‐ [4‐(prop‐1‐en‐2‐yl)phenyl]prop‐2‐en‐1‐one, C18H14Cl2O, (I), prepared from 4‐(prop‐1‐en‐2‐yl)benzaldehyde and 2,4‐dichloroacetophenone, exhibits disorder over two sets of atomic sites having occupancies of 0.664 (6) and 0.336 (6). The related chalcone (2E)‐3‐(4‐chlorophenyl)‐1‐(4‐fluorophenyl)prop‐2‐en‐1‐one reacts with acetone to produce (5RS)‐3‐(4‐chlorophenyl)‐5‐[4‐(propan‐2‐yl)phenyl]cyclohex‐2‐en‐1‐one, C21H21ClO, (II), which exhibits enantiomeric disorder with occupancies at the reference site of 0.662 (4) and 0.338 (4) for the (5R) and (5S) forms; the same chalcone reacts with methyl 3‐oxobutanoate to give methyl (1RS,6SR)‐4‐(4‐chlorophenyl)‐6‐[4‐(propan‐2‐yl)phenyl]‐2‐oxocyclohex‐3‐ene‐1‐carboxylate, C23H23ClO3, (III), where the reference site contains both (1R,6S) and (1S,6R) forms with occupancies of 0.923 (3) and 0.077 (3), respectively. Oxidation, using 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone, of ethyl (1RS,6SR)‐6‐(4‐bromophenyl)‐4‐(4‐fluorophenyl)‐2‐oxocyclohex‐3‐ene‐1‐carboxylate, prepared in a similar manner to (II) and (III), produces ethyl 4′′‐bromo‐4‐fluoro‐5′‐hydroxy‐1,1′:3′,1′′‐terphenyl‐4′‐carboxylate, C21H16BrFO3, (IV), which crystallizes with Z′ = 2 in the space group P. There are no significant intermolecular interactions in the structures of compounds (I) and (II), but for the major disorder component of compound (III), the molecules are linked into sheets by a combination of C—H...O and C—H...π(arene) hydrogen bonds. The two independent molecules of compound (IV) form two different centrosymmetric dimers, one built from inversion‐related pairs of C—H...O hydrogen bonds and the other from inversion‐related pairs of C—H...π(arene) hydrogen bonds. Comparisons are made with related compounds.  相似文献   

16.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

17.
In methyl 4‐(4‐chloroanilino)‐3‐nitrobenzoate, C14H11ClN2O4, (I), there is an intramolecular N—H...O hydrogen bond and the intramolecular distances provide evidence for electronic polarization of the o‐quinonoid type. The molecules are linked into sheets built from N—H...O, C—H...O and C—H...π(arene) hydrogen bonds, together with an aromatic π–π stacking interaction. The molecules of methyl 1‐benzyl‐2‐(4‐chlorophenyl)‐1H‐benzimidazole‐5‐carboxylate, C22H17ClN2O2, (II), are also linked into sheets, this time by a combination of C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

18.
The title compounds, namely (2Z)‐1‐(4‐bromophenyl)‐2‐(pyrrolidin‐2‐ylidene)ethanone, C12H12BrNO, (I), (2Z)‐1‐(4‐bromophenyl)‐2‐(piperidin‐2‐ylidene)ethanone, C13H14BrNO, (II), and (2Z)‐2‐(azepan‐2‐ylidene)‐1‐(4‐bromophenyl)ethanone, C14H16BrNO, (III), are characterized by bifurcated intra‐ and intermolecular hydrogen bonding between the secondary amine and carbonyl groups. The former establishes a six‐membered hydrogen‐bonded ring, while the latter leads to the formation of centrosymmetric dimers. Weak C—H...Br interactions link the individual molecules into chains that run along the [011], [101] and [101] directions in (I)–(III), respectively. Additional weak Br...O, C—H...π and C—H...O interactions further stabilize the crystal structures.  相似文献   

19.
The title compounds, (E)‐2‐[(2‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (I), (E)‐2‐[(3‐bromo­phenyl)­imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (II), and (E)‐2‐[(4‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H⋯N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H⋯π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.  相似文献   

20.
The molecular dimensions of both 2‐amino‐6‐(N‐methylanilino)pyrimidin‐4(3H)‐one, C11H12N4O, (I), and 2‐amino‐6‐(N‐methylanilino)‐5‐nitropyrimidin‐4(3H)‐one, C11H11N5O3, (II), are consistent with considerable polarization of the molecular–electronic structures. The molecules of (I) are linked into a three‐dimensional framework by a combination of one N—H...N hydrogen bond, two independent N—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (II) are linked into ribbons containing three types of edge‐fused ring by the combination of two independent three‐centre N—H...(O)2 hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号