首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds, C18H21NO and C18H21NS, in their enantiomerically pure forms are isostructural with the enantiomerically pure 4‐(4‐hydroxyphenyl)‐2,2,4‐trimethylchroman and 4‐(2,4‐dihydroxyphenyl)‐2,2,4‐trimethylchroman analogues and form extended linear chains via N—H...O or N—H...S hydrogen bonding along the [100] direction. The absolute configuration for both compounds was determined by anomalous dispersion methods with reference to both the Flack parameter and, for the light‐atom compound, Bayesian statistics on Bijvoet differences.  相似文献   

2.
The title compound, [Cu2(OH)2(C12H8N2)2(H2O)2][Cu(C10H9NO5S)2]·6H2O, is comprised of a copper‐centred complex cation and a copper‐centred complex anion; the cation lies about an inversion centre and in the anion the Cu atom lies on an inversion centre. In the doubly charged bridged dicopper cation, each Cu centre has distorted square‐pyramidal geometry. In the square‐planar dianion, two sulfonate ligands are trans coordinated to the Cu atom via a deprotonated hydroxyl O atom and an imine N atom, forming two six‐membered chelate rings. The structure is stabilized by an extensive hydrogen‐bond system and aromatic‐ring stacking interactions.  相似文献   

3.
The title compound, [Sn(C5H5NS)2(C2H4S2)2], was obtained from a 1:2 mixture of bis­(ethane‐1,2‐di­thiol­ato)­tin(IV) and 2‐mercapto­pyridine. The mol­ecules are discrete monomeric trans‐octahedral units, with the SnIV atom at the centre of symmetry, planar 2‐mercapto­pyridine zwitterions and SnS2C2 groups in twist–envelope conformations. The 2‐mercapto­pyridine ligands are monodentate and are bonded through the S atoms. The S—Sn distances between the S atom of edt (edt is ethane‐1,2‐di­thiol­ate) and the Sn atom are 2.473 (1) and 2.505 (1) Å, which are slightly longer than the S—Sn distance in Sn(edt)2 of 2.390 (1) Å. The bond between the 2‐mercapto­pyridine S atom and the Sn atom are, remarkably, weaker than the S—Sn bond involving edt.  相似文献   

4.
In the title Schiff base complex, [Zn(C15H12N7OS)2]·3C3H7NO·H2O, each ZnII atom is six‐coordinated in a distorted octahedral environment by two ligands acting in a tridentate chelating mode through two N atoms and one S atom. The coordination mode of the ligand is nearly planar. There are three dimethylformamide molecules and one water molecule solvating the complex. The coordination behavior of the ligand is compared with that of related ligands in similar complexes.  相似文献   

5.
In the novel title binuclear zinc(II) Schiff base complex, bis­(μ‐11‐thio­semicarbazonoindeno[1,2‐b]quinoxaline‐8‐carboxylato)bis­[(dimethyl sulfoxide)zinc(II)] dimethyl sulfoxide tri­solvate, [Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OS, each ZnII atom is five‐coordinated and situated in a distorted square‐pyramidal environment, coordinated by two L2− ligands and one dimethyl sulfoxide mol­ecule. Each L2− ligand, which coordinates to two ZnII atoms, has two parts. One part, acting in a tridentate chelating mode, coordinates to one ZnII atom through two N atoms and one S atom, while another part coordinates to another ZnII atom through a monodentate carboxylate group. The whole complex has a dimeric structure. The coordination mode of the nearly planar L2− ligand is quite different from the most common mode for Schiff bases.  相似文献   

6.
The crystal structures of the title compounds, (C24H20P)2[Ni(C6H6O4S2)2], (I), and (C24H20P)2[Ni(C6H6O4S2)2]I, (II), in the diamagnetic reduced (2–) and paramagnetic oxidized (1–) states, are reported at 200 and 293 K, respectively. In both compounds, the Ni atom lies on an inversion centre and the NiS4 coordination is thus required to be exactly planar. In the diamagnetic complex, (I), the Ni—S distances are 2.1818 (7) and 2.1805 (6) Å, while they are 2.1481 (6) and 2.1392 (5) Å in the paramagnetic complex, (II). This results from both the different complex core oxidation states and the different conformations of the methoxycarbonyl groups.  相似文献   

7.
In the two title copper(II) complexes, [CuL(C5H7O2)]n, (I), and [CuL′(C5H7O2)], (II), respectively, where HL is 4‐hydroxy‐3‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O3, and HL′ is 4‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O2, the CuII ions display a highly Jahn–Teller‐distorted octahedral and a square‐planar coordination geometry, respectively. In complex (I), two neighbouring CuII atoms are bridged by L and acetylacetonate, alternately, giving rise to a one‐dimensional chain of CuN2O4 octahedra interconnected by these two ligands along the a axis. In addition, the hydroxy H atom of the vanillin group connects to the carboxyl O atom of the adjacent chain via an O—H...O hydrogen bond, giving rise to a three‐dimensional supramolecular assembly. Complex (II) displays a discrete structure.  相似文献   

8.
The palladium(II) centre in the title compound, [PdCl2(C21H18N2OS)], is coordinated to the pyridyl N atom and to the thia­zolidinone S atom of the 5‐benzyl‐3‐phenyl‐2‐(2‐pyridyl)­thia­zolidin‐4‐one ligand, resulting in a five‐membered chelate ring. Two cis‐chloro ligands complete the square‐planar coordination environment of the metal. Although the geometry at the Pd centre is essentially planar, the N—Pd—S bite angle of 85.20 (8)° causes deviations in the cis angles from the ideal value of 90°. Opposite enantiomers form one‐dimensional chains in the cell via a short S?O intermolecular interaction.  相似文献   

9.
The title structure, [Rh2(C7H5O3)4(C2H6OS)2]·[Rh2(C4H7­O2)4(C2H6OS)2]·2C2H6O, contains two discrete neutral Rh–Rh dimers cocrystallized as the ethanol disolvate. Each dimer is situated on an inversion center. The butyrate chain displays disorder in one C‐atom position. In each dimer, the di­methyl sulfoxide ligand (dmso) is bound via S, as expected. The ethanol is a hydrogen‐bond acceptor for one p‐hydroxy­benzoate hydroxyl group and acts as a hydrogen‐bond donor to the dmso O atom of a neighboring p‐hydroxy­benzoate dirhodium complex. A third hydrogen bond is formed from the other p‐hydroxy­benzoate hydroxyl group to the dmso O atom of a butyrate–dirhodium complex.  相似文献   

10.
The structure of the title compound, [PtCl2(C5H5N)(C2H6S)], consists of discrete mol­ecules in which the Pt‐atom coordination is slightly distorted square planar. The Cl atoms are trans to each other, with a Cl—Pt—Cl angle of 176.60 (7)°. The pyridine ligand is rotated 64.5 (2)° from the Pt square plane and one of the Pt—Cl bonds essentially bisects the C—S—C angle of the di­methyl sulfide ligand. In the crystal structure, there are extensive weak C—H⋯Cl interactions, the shortest of which connects mol­ecules into centrosymmetric dimers. A comparison of the structural trans influence on Pt—S and Pt—­N distances for PtS(CH3)2 and Pt(pyridine) fragments, respectively, in square‐planar PtII complexes is presented.  相似文献   

11.
The complex mol­ecule in the title compound, [Re(C9H6NS)Cl2O(C18H15OP)]·C3H6O, has distorted octa­hedral geometry. The Re=O bond occupies the position trans to the triphenyl­phosphine oxide O atom. The Re—Cl bond trans to the thiol­ate S atom is longer than that trans to the quinoline N atom, implying a stronger trans influence of the S atom. Intra‐ and inter­molecular π–π inter­actions are also observed between the π rings in the complex.  相似文献   

12.
The title complex, [La2(C6H7)4(C6H5S)2(C4H8O)2]·2C4H8O, is a centrosymmetric dimer bridged through the S atoms of the benzene­thiolate ligands. The bridging La2S2 unit is completely planar, while the geometry around the nine‐coordinate La atom is that of a distorted trigonal bipyramid. The La—S—La and S—La—S angles are 117.51 (4) and 62.5 (1)°, respectively, and the average La—S bond length is 2.9759 Å. The crystals contain two tetra­hydro­furan solvate mol­ecules for every complex mol­ecule.  相似文献   

13.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

14.
The title complex, [PdCl2(C21H26N2)(C18H15P)], shows slightly distorted square‐planar coordination around the PdII metal centre. The Pd—C bond distance between the N‐heterocyclic ligand and the metal atom is 2.028 (5) Å. The dihedral angle between the two trimethylphenyl ring planes is 36.9 (2)°.  相似文献   

15.
The title complex, chloro­bis{ethyl N‐[(4‐methyl­anilino)­thio­carbonyl]­carbamate‐κS}copper(I), [CuCl(C11H14N2O2S)2], was synthesized by the reaction of cupric chloride with the corresponding thio­urea derivative. The complex has imposed crystallographic m symmetry and the CuI coordination environment is trigonal planar, formed by two S atoms and one Cl atom. The formation of intramolecular hydrogen bonds promotes the stability of the complex.  相似文献   

16.
The title copper(I) complex, [CuCl(C11H14N2O3S)2], was synthesized by the redox reaction of cupric chloride with the corresponding thio­urea derivative as reducing agent. The CuI coordination environment is trigonal planar, involving two S atoms and one Cl atom. The presence of intramolecular hydrogen bonds leads to the formation of a cis conformation and promotes the stability of the complex.  相似文献   

17.
In crystals of the title compound, C23H23N5O3S, the indole system is planar and the phenyl ring of the phenylsulfonyl group makes a dihedral angle with the best plane of the indole system of 77.18 (4)°. The olefinic bond connecting the azabicyclic and indole systems has Z geometry. The geometry adopted by the C=O bond with respect to the N—N bond is trans. The O atom of the carbonyl group of each molecule is hydrogen bonded to the hydrazidic H atom of an adjacent molecule to form an eight‐membered‐ring dimeric structure.  相似文献   

18.
The title compound, (C7H10N)[Ni(C3S5)2] or (Etpy)[Ni(dmit)2] (where Etpy is the N‐ethyl­pyridinium cation, C7H10N+, and dmit is the 2‐thio­xo‐1,3‐di­thiole‐4,5‐di­thiol­ate dianion, C3S52−), crystallizes in the P space group with two mol­ecules in the asymmetric unit. The [Ni(dmit)2] monoanion has a planar D2h conformation, with the central Ni atom and the four coordinated S atoms forming an NiS4 square plane. The six‐membered ring of the Etpy cation also shows good planarity, as expected. There are two main types of disorder in the two Etpy cations. Several short intermolecular interactions are present, such as S⋯S, Ni⋯S and Ni⋯Ni, which help to form the enhanced three‐dimensional structure of the crystal.  相似文献   

19.
The Pd atom in the title compound, [Pd(C6H5S)2(C22H36FeP2)], possesses a distorted square‐planar geometry. The phenyl rings attached to the S atoms are located on opposite sides of the plane defined by the Pd and two S atoms. The Pd—S bonds are statistically significantly different, with values of 2.3703 (7) and 2.3887 (7) Å.  相似文献   

20.
Tetrakis(dimethyl sulfide)palladium(II) bis(tetrafluoroborate), [Pd(C2H6S)4](BF4)2, (I), and tetrakis(1,4‐oxa­thiane‐κS)palladium(II) bis­(tetra­fluoro­borate), [Pd(C4H8OS)4](BF4)2, (II), both crystallize as mononuclear square‐planar complexes with tetra­fluoro­borate as the counter‐ions. The Pd atom accepts four S‐donor atoms and is positioned at an inversion centre in both compounds. The two unique S atoms in the di­methyl sulfide complex, (I), are disordered. The Pd—S distances are in the range 2.3338 (12)–2.3375 (12) Å in (I), and the corresponding distances in the thio­xane complex, (II), are 2.3293 (17) and 2.3406 (17) Å. The anions in both compounds interact weakly with the Pd atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号