首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

2.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

3.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

4.
The reaction of 2,2′:6′,2′′‐terpyridine (terpy) with CuCl2 in the presence of sodium sulfite led to the synthesis of the ionic complex aquachlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II) chlorido(dithionato‐κO)(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)cuprate(II) dihydrate, [CuCl(C15H11N3)(H2O)][CuCl(S2O6)(C15H11N3)]·2H2O, (I), and the in situ synthesis of the S2O62− dianion. Compound (I) is composed of a [CuCl(terpy)(H2O)]+ cation, a [Cu(S2O6)(terpy)] anion and two solvent water molecules. Thermogravimetric analysis indicated the loss of two water molecules at ca 363 K, and at 433 K the weight loss indicated a total loss of 2.5 water molecules. The crystal structure analysis of the resulting pale‐green dried crystals, μ‐dithionato‐κ2O:O′‐bis[chlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II)] monohydrate, [Cu2Cl2(S2O6)(C15H11N3)2]·H2O, (II), revealed a net loss of 1.5 water molecules and the formation of a binuclear complex with two [CuCl(terpy)]+ cations bridged by a dithionate dianion. The crystal‐to‐crystal transformation involved an effective reduction in the unit‐cell volume of ca 7.6%. In (I), the ions are linked by O—H...O hydrogen bonds involving the coordinated and solvent water molecules and O atoms of the dithionate unit, to form ribbon‐like polymer chains propagating in [100]. These chains are linked by Cu...Cl interactions [3.2626 (7) Å in the cation and 3.3492 (7) Å in the anion] centred about inversion centres, to form two‐dimensional networks lying in and parallel to (01). In (II), symmetry‐related molecules are linked by O—H...O hydrogen bonds involving the partially occupied disordered water molecule and an O atom of the bridging thiosulfite anion, to form ribbon‐like polymer chains propagating in [100]. These chains are also linked by Cu...Cl interactions [3.3765 (12) Å] centred about inversion centres to form similar two‐dimensional networks to (I) lying in and parallel to (02), crosslinked into three dimensions by C—H...O=S and C—H...O(water) interactions.  相似文献   

5.
The challenging molecular architecture of spirooxindoles is appealing to chemists because it evokes novel synthetic strategies that address configurational demands and provides platforms for further reaction development. The [3+2] cycloaddition of the carbonyl ylide with arylideneoxindole via a five‐membered cyclic transition state gave a novel class of dispirooxindole derivatives, namely tert‐butyl 4′‐(4‐bromophenyl)‐1′′‐methyl‐2,2′′‐dioxo‐5′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C36H31BrN2O, (Ia), 5′‐(4‐bromophenyl)‐1,1′′‐dimethyl‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C32H25BrN2O3, (Ib), and tert‐butyl 1′′‐methyl‐2,2′′‐dioxo‐4′‐phenyl‐5′‐(p‐tolyl)‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C37H34N2O5, (Ic). Crystal structure analyses of these dispirooxindoles revealed the formation of two diastereoisomers selectively and confirmed their relative stereochemistry (SSSR and RRRS). In all three structures, intramolecular C—H...O and π–π interactions between oxindole and dihydrofuran rings are the key factors governing the regio‐ and stereoselectivity, and in the absence of conventional hydrogen bonds, their crystal packings are strengthened by intermolecular C—H...π interactions.  相似文献   

6.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

7.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

8.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

9.
Three new compounds, CuL, CuL′, and Cu2O2L′′2 (H2L=3′‐[(E)‐{[(1S,2S)‐2‐aminocyclohexyl]imino}methyl]‐4′‐hydroxy‐4‐biphenylcarboxlic acid, H2L′=3′‐[(E)‐{[(1S,2S)‐2‐aminocyclohexyl]imino}methyl]‐4′‐hydroxy‐5′‐nitro‐4‐biphenylcarboxlic acid, H2L′′=3′‐(N,N‐dimethylamino methyl)‐4′‐hydroxy‐4‐biphenylcarboxlic acid), were selectively synthesized through a controlled in situ ligand reaction system mediated by copper(II) nitrate and H2L. Selective nitration was achieved by using different solvent mixtures under relatively mild conditions, and an interesting and economical reductive amination system in DMF/EtOH/H2O was also found. All crystal structures were determined by single‐crystal X‐ray diffraction analysis. Both CuL and CuL′ display chiral 1D chain structures, whereas Cu2O2L′′2 possesses a structure with 13×16 Å channels and a free volume of 41.4 %. The possible mechanisms involved in this in situ ligand‐controlled reaction system are discussed in detail.  相似文献   

10.
The molecular structures of the two mononuclear title complexes, namely (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(3‐phenylpropylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C14H21NS2)(C7H7OS)O], (I), and (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(propylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C7H15NS2)(C7H7OS)O], (II), exhibit the same coordination environment for the central Tc atoms. The atoms are five‐coordinated (TcNOS3) with a square‐pyramidal geometry comprising a tridentate 2,2′‐(3‐phenylpropylimino)bis(ethanethiolate) or 2,2′‐(propylimino)bis(ethanethiolate) ligand, a 4‐methoxybenzenethiolate ligand and an additional oxide O atom. Intermolecular C—H...O and C—H...S hydrogen bonds between the monomeric units result in two‐dimensional layers with a parallel arrangement.  相似文献   

11.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

12.
Structures are reported for two matched sets of substituted 4‐styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1‐(2‐aminophenyl)‐3‐arylprop‐2‐en‐1‐ones with 1,3‐dicarbonyl compounds. (E)‐3‐Acetyl‐4‐[2‐(4‐methoxyphenyl)ethenyl]‐2‐methylquinoline, C21H19NO2, (I), (E)‐3‐acetyl‐4‐[2‐(4‐bromophenyl)ethenyl]‐2‐methylquinoline, C20H16BrNO, (II), and (E)‐3‐acetyl‐2‐methyl‐4‐{2‐[4‐(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C—H…O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C—H…π(arene) hydrogen bond to form a chain of rings; hence, (I)–(III) are not strictly isostructural. By contrast with (I)–(III), no two of ethyl (E)‐4‐[2‐(4‐methoxyphenyl)ethenyl]‐2‐methylquinoline‐3‐carboxylate, C22H21NO3, (IV), ethyl (E)‐4‐[2‐(4‐bromophenyl)ethenyl]‐2‐methylquinoline‐3‐carboxylate, C21H18BrNO2, (V), and ethyl (E)‐2‐methyl‐4‐{2‐[4‐(trifluoromethyl)phenyl]ethenyl}quinoline‐3‐carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C—H…O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C—H…π(pyridyl) hydrogen bond, while that in (VI) contains two independent C—H…O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.  相似文献   

13.
In the three spiroacenaphthylene structures 5′′‐[(E)‐2,3‐dichlorobenzylidene]‐7′‐(2,3‐dichlorophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H26Cl4N2O2S, (I), 5′′‐[(E)‐4‐fluorobenzylidene]‐7′‐(4‐fluorophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H28F2N2O2S, (II), and 5′′‐[(E)‐4‐bromobenzylidene]‐7′‐(4‐bromophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H28Br2N2O2S, (III), the substituted aryl groups are 2,3‐dichloro‐, 4‐fluoro‐ and 4‐bromophenyl, respectively. The six‐membered piperidine ring in all three structures adopts a half‐chair conformation, the thiazolidine ring adopts a slightly twisted envelope and the pyrrolidine ring an envelope conformation; in each case, the C atom linking the rings is the flap atom. In all three structures, weak intramolecular C—H...O interactions are present. The crystal packing is stabilized through a number of intermolecular C—H...O and C—H...X interactions, where X = Cl in (I) and F or S in (II), and C—H...O interactions are observed predominantly in (III). In all three structures, molecules are linked through centrosymmetric ring motifs, further tailored through a relay of C—H...X [Cl in (I), Br in (II) and O in (III)] interactions.  相似文献   

14.
Crystal structures are reported for four (2,2′‐bipyridyl)(ferrocenyl)boronium derivatives, namely (2,2′‐bipyridyl)(ethenyl)(ferrocenyl)boronium hexafluoridophosphate, [Fe(C5H5)(C17H15BN2)]PF6, (Ib), (2,2′‐bipyridyl)(tert‐butylamino)(ferrocenyl)boronium bromide, [Fe(C5H5)(C19H22BN3)]Br, (IIa), (2,2′‐bipyridyl)(ferrocenyl)(4‐methoxyphenylamino)boronium hexafluoridophosphate acetonitrile hemisolvate, [Fe(C5H5)(C22H20BN3O)]PF6·0.5CH3CN, (IIIb), and 1,1′‐bis[(2,2′‐bipyridyl)(cyanomethyl)boronium]ferrocene bis(hexafluoridophosphate), [Fe(C17H14BN3)2](PF6)2, (IVb). The asymmetric unit of (IIIb) contains two independent cations with very similar conformations. The B atom has a distorted tetrahedral coordination in all four structures. The cyclopentadienyl rings of (Ib), (IIa) and (IIIb) are approximately eclipsed, while a bisecting conformation is found for (IVb). The N—H groups of (IIa) and (IIIb) are shielded by the ferrocenyl and tert‐butyl or phenyl groups and are therefore not involved in hydrogen bonding. The B—N(amine) bond lengths are shortened by delocalization of π‐electrons. In the cations with an amine substituent at boron, the B—N(bipyridyl) bonds are 0.035 (3) Å longer than in the cations with a methylene C atom bonded to boron. A similar lengthening of the B—N(bipyridyl) bonds is found in a survey of related cations with an oxy group attached to the B atom.  相似文献   

15.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

16.
The crystal and molecular structures of bis(η5‐2,4,7‐tri­methyl­indenyl)­cobalt(II), [Co(C12H13)2], (I), and rac‐2,2′,4,4′,7,7′‐hexamethyl‐1,1′‐biindene, C24H26, (II), are reported. In the crystal structure of (I), the Co atom lies on an inversion centre and the structure represents the first example of a bis(indenyl)cobalt complex exhibiting an eclipsed indenyl conformation. The (1R,1′R) and (1S,1′S) enantiomers of the three possible stereoisomers of (II), which form as by‐products in the synthesis of (I), cocrystallize in the monoclinic space group P21/c. In the unit cell of (II), alternating (1R,1′R) and (1S,1′S) enantiomers pack in non‐bonded rows along the a axis, with the planes of the indenyl groups parallel to each other and separated by 3.62 and 3.69 Å.  相似文献   

17.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

18.
The title complex, [Ni2Cl4(C22H17N3)2], was synthesized solvothermally. The molecule is a centrosymmetric dimer with the unique NiII centre in a distorted octahedral N3Cl3 coordination environment. The chloride bridges are highly asymmetric. In the 4′‐p‐tolyl‐2,2′:6′,2′′‐terpyridine ligand, the p‐tolyl group is perfectly coplanar with the attached pyridine ring, and this differs from the situation found in previously reported compounds; however, there are no π–π interactions between the ligands. The terminal Cl atom forms four intermolecular C—H...Cl hydrogen bonds with one methyl and three methine groups. The methyl group also forms intermolecular C—H...π interactions with a pyridine ring. These nonclassical hydrogen bonds extend the molecule into a three‐dimensional network.  相似文献   

19.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

20.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号