首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, [CuNa(C4H3O7S)(C10H8N2)(H2O)3]n, consists of one CuII cation, one NaI cation, one 2‐sulfonatobutanedioate trianion (SSC3−), one 2,2′‐bipyridyl (bpy) ligand and three coordinated water molecules as the building unit. The coordination of the CuII cation is composed of two pyridyl N atoms, one water O atom and two carboxylate O atoms in a distorted square‐pyramidal coordination geometry with an axial elongation. The NaI cation is six‐coordinated by three water molecules and three carboxylate O atoms from three SSC3− ligands in a distorted octahedral geometry. Two SSC3− ligands link two CuII cations to form a Cu2(SSC)2(bpy)2 macrocyclic unit lying across an inversion centre, which is further linked by NaI cations via Na—O bonds to give a one‐dimensional chain. Interchain hydrogen bonds link these chains to form a two‐dimensional layer, which is further extended into a three‐dimensional supramolecular framework through π–π stacking interactions. The thermal stability of the title compound has also been investigated.  相似文献   

2.
The title compound, {[Ag(C13H14N2)](C10H6O6S2)0.5·2H2O}n, (I), features a three‐dimensional supramolecular sandwich architecture that consists of two‐dimensional cationic layers composed of polymeric chains of silver(I) ions and 1,3‐bis(4‐pyridyl)propane (bpp) ligands, linked by Ag...Ag and π–π interactions, alternating with anionic layers in which uncoordinated naphthalene‐1,5‐disulfonate (nds2−) anions and solvent water molecules form a hydrogen‐bonded network. The asymmetric unit consists of one AgI cation linearly coordinated by N atoms from two bpp ligands, one bpp ligand, one half of an nds2− anion lying on a centre of inversion and two solvent water molecules. The two‐dimensional {[Ag(bpp)]+}n cationic and {[(nds)·2H2O]2−}n anionic layers are assembled into a three‐dimensional supramolecular framework through long secondary coordination Ag...O interactions between the sulfonate O atoms and AgI centres and through nonclassical C—H...O hydrogen bonds.  相似文献   

3.
The title organic–inorganic hybrid compound, [Co(C10H8N2O2)2(H2O)2]2[Mo8O26]·2H2O, consists of [Co(bpdo)2(H2O)2]2+ (bpdo is 2,2‐bipyridine N,N′‐dioxide) and ξ‐[Mo8O26]4− groups in a 2:1 ratio, plus two water solvent molecules. The independent Co atom in the cation is coordinated by four O atoms from two bpdo ligands and two water molecules, in a distorted octahedral geometry. The counter‐anions, built up around a symmetry center, are linked by solvent water molecules through O—H...O hydrogen bonds to generate two‐dimensional layers, which are in turn linked by coordinated water molecules from the cationic units through further O—H...O hydrogen bonds, forming a three‐dimensional supramolecular structure.  相似文献   

4.
The title 3‐nitrophthalate–calcium coordination polymer, {[Ca(C8H3NO6)(H2O)2]·H2O}n, crystallizes as a one‐dimensional framework. The CaII centre has a distorted pentagonal–bipyramidal geometry, being seven‐coordinated by five O atoms from three different 3‐nitrophthalate groups and by two water molecules, resulting in a one‐dimensional zigzag chain along the a‐axis direction by the interconnection of the four O atoms from the two carboxylate groups. There is a D3 water cluster composed of the coordinated and the solvent water molecules within such chains. Adjacent chains are aggregated into two‐dimensional layers via hydrogen bonds in the c‐axis direction. The whole three‐dimensional structure is further stabilized by weak O—H...O hydrogen bonds between the O atoms of the nitro group and the water molecules.  相似文献   

5.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

6.
The crystal structure of the title compound, {(C3H12N2)[Mo3O10]·2H2O}n, is composed of [Mo3O10]2− anionic chains, propane‐1,3‐diammonium cations and solvent water molecules. The [Mo3O10]2− chain is constructed from edge‐sharing MoO6 octahedra. The protonated propane‐1,3‐diamine cations and solvent water molecules are located between the chains and are linked to the O atoms of the inorganic chains by hydrogen bonds.  相似文献   

7.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

8.
Imidazole‐4,5‐dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen‐bonding donors and acceptors. A new one‐dimensional coordination polymer, namely catena‐poly[[diaquacadmium(II)]‐μ3‐2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2]n or [Cd(H2Phbidc)1/2(H2O)2]n, has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six‐coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six‐coordinated by two N atoms and two O atoms from two symmetry‐related H2Phbidc4− ligands and by two O atoms from two symmetry‐related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one‐dimensional chain which runs parallel to the b axis. In the crystal, the one‐dimensional chains are connected through hydrogen bonds, generating a two‐dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

9.
A novel neutral polymer, {[Co2(C7H3NO4)2(H2O)4]·2H2O}n, was hydrothermally synthesized using pyridine‐2,5‐dicarboxylate (2,5‐PDC2−) as the organic linker. It features a two‐dimensional layer structure constructed from one‐dimensional {[Co(2,5‐PDC)2]2−}n chains interlinked by [Co(H2O)4]+ units. The two CoII cations occupy special positions, sitting on inversion centres. Each 2,5‐PDC2− anion chelates to one CoII cation via the pyridine N atom and an O atom of the adjacent carboxylate group, and links to two other CoII cations in a bridging mode via the O atoms of the other carboxylate group. In this way, the 2,5‐PDC2− ligand connects three neighbouring CoII centres to form a two‐dimensional network. The two‐dimensional undulating layers are linked by extensive hydrogen bonds to form a three‐dimensional supramolecular structure, with the uncoordinated solvent molecules occupying the interlamellar region.  相似文献   

10.
Crystals of the title compound, 2C3H7N6+·C10H6O6S22−·C3H6N6·5H2O, are built up of neutral 2,4,6‐triamino‐1,3,5‐triazine (melamine), singly protonated melaminium cations, naphthalene‐1,5‐disulfonate dianions and water molecules. Two independent anions lie across centres of inversion in the space group P. The melamine molecules are connected by N—H...N hydrogen bonds into two different one‐dimensional polymers almost parallel to the (010) plane, forming a stacking structure along the b axis. The centrosymmetric naphthalene‐1,5‐disulfonate anions interact with water molecules via O—H...O hydrogen bonds, forming layers parallel to the (001) plane. The cations and anions are connected by N—H...O and O—H...N hydrogen bonds to form a three‐dimensional supramolecular framework.  相似文献   

11.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

12.
The structures of two ammonium salts of 3‐carboxy‐4‐hydroxybenzenesulfonic acid (5‐sulfosalicylic acid, 5‐SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S·H2O, (I), the 5‐SSA monoanions give two types of head‐to‐tail laterally linked cyclic hydrogen‐bonding associations, both with graph‐set R44(20). The first involves both carboxylic acid O—H...Owater and water O—H...Osulfonate hydrogen bonds at one end, and ammonium N—H...Osulfonate and N—H...Ocarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O—H...Osulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three‐dimensional framework structure through N—H...O and water O—H...O hydrogen bonds to sulfonate O‐atom acceptors. Anhydrous triammonium 3‐carboxy‐4‐hydroxybenzenesulfonate 3‐carboxylato‐4‐hydroxybenzenesulfonate, 3NH4+·C7H4O6S2−·C7H5O6S, (II), is unusual, having both dianionic 5‐SSA2− and monoanionic 5‐SSA species. These are linked by a carboxylic acid O—H...O hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half‐cations lying on crystallographic twofold rotation axes), give a pseudo‐centrosymmetric asymmetric unit. Cation–anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N—H...O hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three‐dimensional framework structure. This work further demonstrates the utility of the 5‐SSA monoanion for the generation of stable hydrogen‐bonded crystalline materials, and provides the structure of a dianionic 5‐SSA2− species of which there are only a few examples in the crystallographic literature.  相似文献   

13.
In the title compounds, C10H8N2O2, (I), and C12H12N2O2, (II), the two carbonyl groups are oriented with torsion angles of −149.3 (3) and −88.55 (15)°, respectively. The single‐bond distances linking the two carbonyl groups are 1.528 (4) and 1.5298 (17) Å, respectively. In (I), the molecules are linked by an elaborate system of N—H...O hydrogen bonds, which form adjacent R22(8) and R42(8) ring motifs to generate a ladder‐like construct. Adjacent ladders are further linked by N—H...O hydrogen bonds to build a three‐dimensional network. The hydrogen bonding in (II) is far simpler, consisting of helical chains of N—H...O‐linked molecules that follow the 21 screw of the b axis. It is the presence of an elaborate hydrogen‐bonding system in the crystal structure of (I) that leads to the different torsion angle for the orientation of the two adjacent carbonyl groups from that in (II).  相似文献   

14.
The title compound, {[Ni(C9H4O6)(C14H14N4)]·0.41H2O}n, exhibits a three‐dimensional hydrogen‐bonded supramolecular framework. The NiII cation is six‐coordinated in a distorted triangular prism defined by two N atoms from two 1,3‐bis(imidazol‐l‐ylmethyl)benzene (bix) ligands and four O atoms from two 5‐carboxybenzene‐1,3‐dicarboxylate (HBTC) dianions. The bix molecules and HBTC dianions both act as bidentate ligands, linking the NiII cations to form a one‐dimensional coordination polymer. A two‐dimensional wave‐like net is constructed by O—H...O hydrogen bonds linking adjacent chains. Partially occupied solvent water molecules fill the cavities and link these layers to form a three‐dimensional supramolecular structure via O—H...O hydrogen bonds. The title compound was also characterized by powder X‐ray diffraction and thermogravimetric analysis.  相似文献   

15.
The crystal structures of two salts, products of the reactions between [(5‐methyl‐2‐pyridyl)aminomethylene]bis(phosphonic acid) and 4‐aminopyridine or ammonia, namely bis(4‐aminopyridinium) hydrogen [(5‐methyl‐2‐pyridinio)aminomethylene]diphosphonate 2.4‐hydrate, 2C5H7N2+·C7H10N2O6P22−·2.4H2O, (I), and triammonium hydrogen [(5‐methyl‐2‐pyridyl)aminomethylene]diphosphonate monohydrate, 3NH4+·C7H9N2O6P23−·H2O, (II), have been determined. In (I), the Z configuration of the ring N—C and amino N—H bonds of the bisphosphonate dianion with respect to the Cring—Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bisphosphonate trianion in (II). Compound (I) exhibits a three‐dimensional hydrogen‐bonded network, in which 4‐aminopyridinium cations and water molecules are joined to ribbons composed of anionic dimers linked by O—H...O and N—H...O hydrogen bonds. The supramolecular motif resulting from a combination of these three interactions is a common phenomenon in crystals of all of the Z‐isomeric zwitterions of 4‐ and 5‐substituted (2‐pyridylaminomethylene)bis(phosphonic acid)s studied to date. In (II), ammonium cations and water molecules are linked to chains of trianions, resulting in the formation of double layers.  相似文献   

16.
The cocrystallization of adamantane‐1,3‐dicarboxylic acid (adc) and 4,4′‐bipyridine (4,4′‐bpy) yields a unique 1:1 cocrystal, C12H16O4·C10H8N2, in the C2/c space group, with half of each molecule in the asymmetric unit. The mid‐point of the central C—C bond of the 4,4′‐bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O—H...N hydrogen bonds [O...N = 2.6801 (17) Å] and the weaker of which are C—H...O hydrogen bonds [C...O = 3.367 (2) Å]. Alternate adc and 4,4′‐bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through π–π interactions along the c axis to generate two‐dimensional layers. These layers are neatly packed into a stable crystalline three‐dimensional form via weak C—H...O hydrogen bonds [C...O = 3.2744 (19) Å] and van der Waals attractions.  相似文献   

17.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

18.
In the title compound, {[Zn(C10H8N2)(H2O)4](C6H5O4S)2·3H2O}n, the Zn atom, the bipyridine ligand and one of water mol­ecules are located on twofold rotation axes. The Zn atom is coordinated by four O atoms from four water mol­ecules and two N atoms from two 4,4′‐bipyridine mol­ecules in a distorted octa­hedral geometry. The Zn2+ ions are linked by the 4,4′‐bipyridine mol­ecules to form a one‐dimensional straight chain propagating along the c axis. The 4‐hydroxy­benzene­sulfonate counter‐ions are bridged by the solvent water mol­ecules through hydrogen bonds to generate a two‐dimensional layer featuring large pores. In the crystal packing, the intra­layer pores form one‐dimensional channels along the c axis, in which the one‐dimensional [Zn(C10H8N2)(H2O)4]2+ chains are encapsulated. Electrostatic inter­actions between cations and anions and extensive hydrogen bonds result in a three‐dimensional supra­molecular structure.  相似文献   

19.
In the structure of the title 1:1 proton‐transfer compound of brucine with 2‐(2,4,6‐trinitroanilino)benzoic acid, C23H27N2O4+·C13H7N4O8·H2O, the brucinium cations form classic undulating ribbon substructures through overlapping head‐to‐tail interactions, while the anions and the three related partial solvent water molecules (having occupancies of 0.73, 0.17 and 0.10) occupy the interstitial regions of the structure. The cations are linked to the anions directly through N—H...OCOO− hydrogen bonds and indirectly by the three water molecules, which form similar conjoint cyclic bridging units [graph set R24(8)] through O—H...OC=O and O—H...OCOO− hydrogen bonds, giving a two‐dimensional layered structure. Within the anion, intramolecular N—H...OCOO− and N—H...Onitro hydrogen bonds result in the benzoate and picrate rings being rotated slightly out of coplanarity [inter‐ring dihedral angle = 32.50 (14)°]. This work provides another example of the molecular selectivity of brucine in forming stable crystal structures, and also represents the first reported structure of any form of the guest compound 2‐(2,4,6‐trinitroanilino)benzoic acid.  相似文献   

20.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号