首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the crystal structures of the two imidazole derivatives 5‐chloro‐1,2‐dimethyl‐4‐nitro‐1H‐imidazole, C5H6ClN3O2, (I), and 2‐chloro‐1‐methyl‐4‐nitro‐1H‐imidazole, C4H4ClN3O2, (II), C—Cl...O halogen bonds are the principal specific interactions responsible for the crystal packing. Two different halogen‐bond modes are observed: in (I), there is one very short and directional C—Cl...O contact [Cl...O = 2.899 (1) Å], while in (II), the C—Cl group approaches two different O atoms from two different molecules, and the contacts are longer [3.285 (2) and 3.498 (2) Å] and less directional. In (I), relatively short C—H...O hydrogen bonds provide the secondary interactions for building the crystal structure; in (II), the C—H...O contacts are longer but there is a relatively short π–π contact between molecules related by a centre of symmetry. The molecule of (I) is almost planar, the plane of the nitro group making a dihedral angle of 6.97 (7)° with the mean plane of the imidazole ring. The molecule of (II) has crystallographically imposed mirror symmetry and the nitro group lies in the mirror plane.  相似文献   

2.
The title compounds, C13H15N3O5S and C11H10N2O4S2, respectively, both contain a phenyl­sulfonyl group connected, through a methyl­ene bridge, to either a substituted nitro­imidazole or nitro‐1,3‐thia­zole ring. In the imidazole‐containing mol­ecule, the nitro and sulfonyl groups are trans relative to the sulfonyl–methyl bond, while in the thia­zole‐containing mol­ecule, these substituents are cis. The stabilizing interactions within the crystals are also different between the two compounds.  相似文献   

3.
1,3‐Bis(ethylamino)‐2‐nitrobenzene, C10H15N3O2, (I), and 1,3‐bis(n‐octylamino)‐2‐nitrobenzene, C22H39N3O2, (II), are the first structurally characterized 1,3‐bis(n‐alkylamino)‐2‐nitrobenzenes. Both molecules are bisected though the nitro N atom and the 2‐C and 5‐C atoms of the ring by twofold rotation axes. Both display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, but no intermolecular hydrogen bonding. The nearly planar molecules pack into flat layers ca 3.4 Å apart that interact by hydrophobic interactions involving the n‐alkyl groups rather than by π–π interactions between the rings. The intra‐ and intermolecular interactions in these molecules are of interest in understanding the physical properties of polymers made from them. Upon heating in the presence of anhydrous potassium carbonate in dimethylacetamide, (I) and (II) cyclize with formal loss of hydrogen peroxide to form substituted benzimidazoles. Thus, 4‐ethylamino‐2‐methyl‐1H‐benzimidazole, C10H13N3, (III), was obtained from (I) under these reaction conditions. Compound (III) contains two independent molecules with no imposed internal symmetry. The molecules are linked into chains via N—H...N hydrogen bonds involving the imidazole rings, while the ethylamino groups do not participate in any hydrogen bonding. This is the first reported structure of a benzimidazole derivative with 4‐amino and 2‐alkyl substituents.  相似文献   

4.
In two closely related 1‐aryl‐2‐methyl‐4‐nitro‐5‐cyano­imid­azoles, namely 2‐methyl‐4‐nitro‐1‐phenyl‐1H‐imidazole‐5‐carbo­nitrile, C11H8N4O2, and 1‐(4‐chloro­phenyl)‐2‐methyl‐4‐nitro‐1H‐imidazole‐5‐carbo­nitrile, C11H7ClN4O2, different weak intermolecular interactions determine the crystal packing. In the 1‐phenyl derivative, dipole–dipole interactions between antiparallel cyano groups connect mol­ecules into centrosymmetric dimers, while in the 1‐(4‐chloro­phenyl) derivative, the dimers are connected by C≡N⋯Cl—C halogen bonds. These interactions, together with weak C—H⋯O(N) hydrogen bonds, connect mol­ecules related by subsequent centres of inversion into infinite tapes.  相似文献   

5.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

6.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

7.
In the coordination polymer, poly[[{μ‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole‐κ2N:N′}(μ‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] dimethylformamide monosolvate pentahydrate], {[Zn(C9H4O6)(C11H10N4)]·C3H7NO·5H2O}n, the ZnII ion is coordinated by two N atoms from two symmetry‐related 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole (bmi) ligands and two O atoms from two symmetry‐related 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) ligands in a slightly distorted tetrahedral geometry. The ZnII ions are bridged by Hbtc2− and bmi ligands, leading to a 4‐connected two‐dimensional network with the topological notation (44.62). Adjacent layers are further connected by 12 kinds of hydrogen bonds and also by π–π interactions, resulting in a three‐dimensional supramolecular architecture in the solid state.  相似文献   

8.
In the triclinic polymorph of 2‐iodo‐4‐nitro­aniline, C6H5IN2O2, space group P, the mol­ecules are linked by paired N—­H?O hydrogen bonds into C(8)[R(6)] chains of rings. These chains are linked into sheets by nitro?I interactions, and the sheets are pairwise linked by aromatic π–π‐stacking interactions. In the orthorhombic polymorph, space group Pbca, the mol­ecules are linked by single N—H?O hydrogen bonds into spiral C(8) chains; the chains are linked by nitro?O interactions into sheets, each of which is linked to its two immediate neighbours by aromatic π–π‐stacking inter­actions, so producing a continuous three‐dimensional ­structure.  相似文献   

9.
Subtle modifications of N‐donor ligands can result in complexes with very different compositions and architectures. In the complex catena‐poly[[bis{1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole‐κN 3}copper(II)]‐μ‐benzene‐1,3‐dicarboxylato‐κ3O 1,O 1′:O 3], {[Cu(C8H4O4)(C10H9N5)2(H2O)]·2H2O}n , each CuII ion is six‐coordinated by two N atoms from two crystallographically independent 1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole (bmi) ligands, by three O atoms from two symmetry‐related benzene‐1,3‐dicarboxylate (bdic2−) ligands and by one water molecule, leading to a distorted CuN2O4 octahedral coordination environment. The CuII ions are connected by bridging bdic2− anions to generate a one‐dimensional chain. The bmi ligands coordinate to the CuII ions in monodentate modes and are pendant on opposite sides of the main chain. In the crystal, the chains are linked by O—H…O and O—H…N hydrogen bonds, as well as by π–π interactions, into a three‐dimensional network. A thermogravimetric analysis was carried out and the fluorescence behaviour of the complex was also investigated.  相似文献   

10.
4,6‐Dinitro‐N,N′‐di‐n‐octylbenzene‐1,3‐diamine, C22H38N4O4, (I), 4,6‐dinitro‐N,N′‐di‐n‐undecylbenzene‐1,3‐diamine, C28H50N4O4, (II), and N,N′‐bis(2,4‐dinitrophenyl)octane‐1,8‐diamine, C20H24N6O8, (III), are the first synthetic meta‐dinitroarenes functionalized with long‐chain aliphatic amine groups to be structurally characterized. The intra‐ and intermolecular interactions in these model compounds provide information that can be used to help understand the physical properties of corresponding polymers with similar functionalities. Compounds (I) and (II) possess near‐mirror symmetry, with the octyl and undecyl chains adopting fully extended anti conformations in the same direction with respect to the ring. Compound (III) rests on a center of inversion that occupies the mid‐point of the central C—C bond of the octyl chain. The middle six C atoms of the chain form an anti arrangement, while the remaining two C atoms take hard turns almost perpendicular to the rest of the chain. All three molecules display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, with the same NH group forming a bifurcated intermolecular hydrogen bond to the nitro O atom of an adjacent molecule. In each case, these interactions link the molecules into one‐dimensional molecular chains. In (I) and (II), these chains pack so that the pendant alkyl groups are interleaved parallel to one another, maximizing nonbonded C—H contacts. In (III), the alkyl groups are more isolated within the molecular chains and the primary nonbonded contacts between the chains appear to involve the nitro groups not involved in the hydrogen bonding.  相似文献   

11.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

12.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

13.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

14.
The title compounds, C10H10N22+·C8Cl4O42−·2H2O, (I), and 2C12H9N2+·C8Cl4O42−·C8H2Cl4O4·3H2O, (II), both crystallize as charge‐transfer organic salts with the dianionic or neutral acid components lying on inversion centres. The acid and base subunits in (I) arrange alternately to generate a linear tape motif via N—H...O hydrogen bonds; these tapes are further combined into a three‐dimensional architecture through multiple O—H...O and C—H...O interactions involving solvent water molecules. In contrast, the neutral and anionic acid components in (II) are linked to form a zigzag chain by means of O—H...O hydrogen bonds between acid groups, with dangling 1,10‐phenanthrolinium units connected to these chains by carboxylate–pyridinium interactions with R22(7) hydrogen‐bond notation. Adjacent chains are further extended to result in a two‐dimensional corrugated layer network viaπ–π interactions. Inter‐ion Cl...O interactions are also found in both (I) and (II).  相似文献   

15.
Crystal structures are reported for three substituted 1H‐imidazole‐4,5‐dicarbonitrile compounds used as catalysts for the coupling reaction of nucleoside methyl phosphonamidites, namely 2‐(3′,5′‐dimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C19H14N4, (I), 2‐(2′,4′,6′‐trimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C20H16N4, (II), and 2‐[8‐(3,5‐dimethylphenyl)naphthalen‐1‐yl]‐1H‐imidazole‐4,5‐dicarbonitrile, C23H16N4, (III). The asymmetric unit of (I) contains two independent molecules with similar conformations. There is steric repulsion between the imidazole group and the terminal phenyl group in all three compounds, resulting in the nonplanarity of the molecules. The naphthalene group of (III) shows significant deviation from planarity. The C—N bond lengths in the imidazole rings range from 1.325 (2) to 1.377 (2) Å. The molecules are connected into zigzag chains by intermolecular N—H...Nimidazole [for (I)] or N—H...·Ncyano [for (II) and (III)] hydrogen bonds.  相似文献   

16.
The crystal structures of two salts, products of the reactions between [(5‐methyl‐2‐pyridyl)aminomethylene]bis(phosphonic acid) and 4‐aminopyridine or ammonia, namely bis(4‐aminopyridinium) hydrogen [(5‐methyl‐2‐pyridinio)aminomethylene]diphosphonate 2.4‐hydrate, 2C5H7N2+·C7H10N2O6P22−·2.4H2O, (I), and triammonium hydrogen [(5‐methyl‐2‐pyridyl)aminomethylene]diphosphonate monohydrate, 3NH4+·C7H9N2O6P23−·H2O, (II), have been determined. In (I), the Z configuration of the ring N—C and amino N—H bonds of the bisphosphonate dianion with respect to the Cring—Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bisphosphonate trianion in (II). Compound (I) exhibits a three‐dimensional hydrogen‐bonded network, in which 4‐aminopyridinium cations and water molecules are joined to ribbons composed of anionic dimers linked by O—H...O and N—H...O hydrogen bonds. The supramolecular motif resulting from a combination of these three interactions is a common phenomenon in crystals of all of the Z‐isomeric zwitterions of 4‐ and 5‐substituted (2‐pyridylaminomethylene)bis(phosphonic acid)s studied to date. In (II), ammonium cations and water molecules are linked to chains of trianions, resulting in the formation of double layers.  相似文献   

17.
The molecules of both methyl 4‐[2‐(4‐chlorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12ClN3O5, (I), and methyl 4‐[2‐(2‐fluorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12FN3O5, (II), contain an intramolecular N—H...O hydrogen bond, and both show electronic polarization in the nitrated aryl ring. In both compounds, molecules are linked by a combination of N—H...O and C—H...O hydrogen bonds to form sheets, which are built from R43(18) rings in (I) and from R44(28) rings in (II). In each of methyl 3‐phenyl‐1,2,4‐benzotriazine‐6‐carboxylate, C15H11N3O2, (III), and methyl 3‐(4‐methylphenyl)‐1,2,4‐benzotriazine‐6‐carboxylate, C16H13N3O2, (IV), the benzotriazine unit shows naphthalene‐type delocalization. There are no hydrogen bonds in the structures of compounds (III) and (IV), but in both compounds, the molecules are linked into chains by π–π stacking interactions involving the benzotriazine units. The mechanism of chain formation is the same in both (III) and (IV), and the different orientations of the two chains can be related to the approximate relationship between the unit‐cell metrics for (III) and (IV).  相似文献   

18.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

19.
Single‐crystal X‐ray diffraction analysis of poly[bis(μ2‐5‐carboxy‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:O5)copper(II)], [Cu(C8H9N2O4)2)]n, indicates that one carboxylic acid group of the 2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PDI) ligand is deprotonated. The resulting H2PDI anion, acting as a bridge, connects the CuII cations to form a two‐dimensional (4,4)‐connected layer. Adjacent layers are further linked through interlayer hydrogen‐bond interactions, resulting in a three‐dimensional supramolecular structure.  相似文献   

20.
Two new ZnII coordination polymers, namely, catena‐poly[[dibromidozinc(II)]‐μ‐[3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione‐κ2N:N′]], [ZnBr2(C24H14N2O2)]n, (1), and poly[[bromido[μ3‐10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olato‐κ3N:N′:O9]zinc(II)] hemihydrate], {[ZnBr(C24H15N2O2)]·0.5H2O}n, (2), have been synthesized through hydrothermal reaction of ZnBr2 and a 60° angular phenanthrenedione‐based linker, i.e. 3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione, in different solvent systems. Single‐crystal analysis reveals that polymer (1) features one‐dimensional zigzag chains connected by weak C—H...π and π–π interactions to form a two‐dimensional network. The two‐dimensional networks are further stacked in an ABAB fashion along the a axis through C—H...O hydrogen bonds. Layers A and B comprise left‐ and right‐handed helical chains, respectively. Coordination polymer (2) displays a wave‐like two‐dimensional layered structure with helical chains. In this compound, there are two opposite helical –Zn–HL– chains [HL is 10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olate] in adjacent layers. The layers are packed in an ABAB sequence and are further connected through O—H...Br and O—H...O hydrogen‐bond interactions to form a three‐dimensional framework. In (1) and (2), the mutidentate L and HL ligands exhibits different coordination modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号