首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The standard molar enthalpies of formation f H m ° (cr) at the temperature T = 298.15 K were determined using combustion calorimetry for di-tert-butyl-methanol (A), di-tert-butyl-iso-propyl-methanol (B), and di-phenyl-methyl-methanol (C). The standard molar enthalpies of sublimation cr 8 H m ° of these compounds and of di-phenyl-methanol (D) were obtained from the temperature variation of the vapor pressure measured in a flow system. Molar enthalpies of fusion cr 1 H m ° of the compounds A–D and of tri-phenyl-methanol (E) were measured by differential scanning calorimeter (DSC). From these data and data available from the literature, the following standard molar enthalpies of formation in gaseous phase f H m ° (g) for A, (–397.0 ± 1.2); B, (–418.1 ± 2.3); C, (–34.2 ± 1.3); and D, (0.9 ± 2.1) kJ · mol–1 were derived, which correspond to strain enthalpies (H S) of 46.1, 114.7, 8.1, and 5.0 kJ · mol–1, respectively.  相似文献   

2.
The standard molar enthalpies of formation H f 00B0; (liq) at the temperature t = 298.15 K were determined using combustion calorimetry for N-methyl-3-methyl-3-phenyl-2-butaneamine 1a, N,N-dimethyl-3-methyl-3-phenyl-2-butaneamine 1b N-methyl-2,3-dimethyl-3-phenyl-2-butaneamine 2a, and N,N-dimethyl-2,3-dimethyl-3-phenyl-2-butaneamine 2b. The standard molar enthalpies of vaporization H vap 00B0; of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. The following standard molar enthalpies of formation in gaseous phase H f 00B0; (g) are obtained from these data: for 1a – 10.9 ± 1.9; 1b – 3.6 ± 1.8; 1c – 26.6 ± 1.4, and 1d – 23.0 ± 1.8 kJ mol–1. From the standard molar enthalpies of formation for gaseous compounds which are available in the literature, improved values for the increments of the Benson group addivitiy scheme of amines were calculated. They are used to determine the strain enthalpies of the amines 1 and 2 from this investigation.  相似文献   

3.
We have measured enthalpies of dilution of aqueous sulfamic acid solutions at 25°C and used results of these measurements to calculate the standard enthalpy of ionization of sulfamic acid. The average H 1on 0 obtained in this work was 735±200 J-mol–1. We have also measured enthalpies of solution of crystalline sulfamic acid in water at 25°C. The results from both measurements are combined with some earlier results from Wu and Hepler to obtain a best value for the standard enthalpy of solution, H S 0 =19.2±0.2 kJ-mol–1.  相似文献   

4.
Apparent equilibrium constants and calorimetric enthalpies of reaction have been measured for the reaction L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + ammonia(aq) which is catalyzed by L-tryptophanase. High-pressure liquid-chromatography and microcalorimetery were used to perform these measurements. The equilibrium measurements were performed as a function of pH, temperature, and ionic strength. The results have been interpreted with a chemical equilibrium model to obtain thermodynamic quantities for the reference reaction: L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + NH 4 + (aq). At T=25°C and Im=O the results for this reaction are: Ko=(1.05±0.13)×10–4, G°=(22.71±0.33) kJ-mol–1, H°=(62.0±2.3) kJ-mol–1, and S°=(132±8) J-K–1-mol–1. These results have been used together with thermodynamic results from the literature to calculate standard Gibbs energies of formation, standard enthalpies of formation, standard molar entropies, standard molar heat capacities, and standard transformed formation properties for the substances participating in this reaction.Presented at the Symposium, 76th CSC Congress, Sherbrooke, Quebec, May 30–June 3, 1993, honoring Professor Donald Patterson on the occasion of his 65th birthday.  相似文献   

5.
The general thermochemical reaction LnCl3·6H2O(c)+3Hthd(1)+73.92H2O(1) = Ln(thd)3(c) +3HCl·26.64H2O(aq); rHm (Ln = Pr, Ho and thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) was employed to determine through solution-reaction calorimetry at 298.15 K the standard molar enthalpies of formation of crystalline chelates, –2434.3±11.5 (Pr) and –2384.8±11.5 (Ho) kJ mol–1. These values and the corresponding molar enthalpies of sublimation enabled the determination of the standard molar enthalpies of chelates in the gaseous phase. From these values the mean enthalpies of the lanthanide-oxygen bond, 265±10 (Pr) and 253±10 (Ho) kJ mol–1 were calculated.  相似文献   

6.
We have made calorimetric measurements of enthalpies of dilution of aqueous iodic acid and have used these results for evaluation of the standard enthalpy of ionization of HIO3(aq.). We have also made calorimetric measurements of enthalpies of addition of perchloric acid solution to aqueous solutions of KIO3, KNO3, NaIO3, and NaNO3 and have used these results to obtain further values for the standard enthalpy of ionization of HIO3(aq.). On the basis of all these results, we have selected Ho=–660±125 cal-mole–1 as the best available standard enthalpy of ionization of HIO3(aq.) at 298.15°K, compared to the previously accepted –2400 cal-mole–1. Using the best available K=0.157 for ionization, we also obtain Go=1097 cal-mole–1 and So=–5.9 cal-oK–1-mole–1 for ionization of HIO3(aq) at 298.15°K.On study leave from Department of Inorganic and Analytical Chemistry, LaTrobe University, Bundoora, Victoria, 3083, Australia, to University of Lethbridge.On study leave from Department of Chemistry, University of Wollongong, Wollongong, N.S.W. 2500, Australia, to University of Lethbridge.  相似文献   

7.
The differential enthalpies of solution of sodium nitrate in water have been measured calorimetrically at 25°C, from 0.5 to 10.4 mol (kg H2O)–1. The concentration dependence is described by the equation H=20.4537+1.0562m1/2-7.0568m+2.8659m3/2-0.3382m2 From the calorimetric measurements, the enthalpy of crystallization of sodium nitrate was calculated as Hc=9.98±0.16 kL-mol-1. The literature data on the solubility, activity and osmotic coefficients of NaNO3 at 25°C yielded a value of –9.98±0.38 kJ-mol–1. The good agreement between the experimental and calculated Hc values indicate the reliability of the input data.  相似文献   

8.
The enthalpies of dilution of aqueous solutions of HCl, H3PO4, NaOH, NaH2PO4, Na2HPO4 and Na3PO4 in the molality range 0.1 to 1.0 mole-kg–1 have been determined at 30°C. The relative apparent molal enthalpies L of HCl, NaOH, NaH2PO4 and Na2HPO4 have been determined with the aid of an extended form of the Debye-Hückel limiting law. The relative apparent molal enthalpies for Na3PO4 solutions have been corrected for hydrolysis. A value of H H o =9525±150 cal-mole–1 was determined for the heat of hydrolysis of PO 4 –3 . This value gives H 3 o =3815±150 cal-mole–1 for the ionization of H2PO 4 , which is in good agreement with the value of H 3 o =3500±500 cal-mole–1 determined directly by Pitzer at 25°C. The relative apparent molal enthalpies for H3PO4 solutions have been corrected for ionization. A value of H 1 o =–1900±150 cal-mole–1 was obtained for the heat of ionization of H3PO4 to H++H2PO 4 . This value is in good agreement with the value of H 1 o =–2031 cal-mole–1 at 30°C determined by Harned and Owen from the temperature coefficient of the equilibrium constant and H 1 o =–1950±80 cal-mole–1 at 25°C determined from calorimetry by Pitzer.  相似文献   

9.
The solubility property of Zn(NO3)2–Thr–H2O system (Thr—threonine) at 25°C in the entire concentration range has been investigated by the phase equilibrium semimicromethod. The corresponding phase diagram and refractive index diagram were constructed. From the phase equilibrium results, the incongruently soluble compounds of Zn(Thr)(NO3)2 · 2H2O, Zn(Thr)2(NO3)2 · H2O, and Zn(Thr)3(NO3)2 · H2O were synthesized and characterized by IR, XRD, TG–DTG, chemical and elemental analyses. The constant-volume combustion energies of the compounds, c E, determined by precision rotating bomb calorimeter at 298.15 K, were –6266.88 ± 3.72, –9263.28 ± 2.23, and –11 423.11 ± 6.81 J/g, respectively. The standard enthalpies of combustion for these compounds, c H m ° (complex, s., 298.15 K), were calculated as –2147.40 ± 1.28, –4120.83 ± 0.99, and –6444.68 ± 3.85 kJ/mol and the standard enthalpies of formation, f H m ° (complex, s., 298.15 K), are –1632.82 ± 1.43, –1885.55 ± 1.50, and –2770.25 ± 4.21 kJ/mol. The enthalpies of dissolution of the complexes in a medium of simulated human gastric juice (37°C, pH 1, in the solution of hydrochloric acid), dis H m ° (complex, s., 310 K), which were also measured by a microcalorimeter to be 13.36 ± 0.06, 15.53 ± 0.06, and 17.04 ± 0.05 kJ/mol, respectively.  相似文献   

10.
The sublimation pressure of chromium trichloride was measured by the static method with a quartz membrane-gauge manometer in the temperature range of 875–1230 K. An approximating equation for the sublimation pressure vs. temperature was found. The enthalpy (259.4±4 kJ mol–1) and the entropy (224.2±3.5 J mol–1 K–1) of sublimation at 298 K were calculated. For the process 2 CrCl3(g) + Cl2(g) = 2 CrCl4(g), the following values were obtained: r H°298 = –207.1±11.6 kJ mol–1 and r S°298 = –173.6±10 5 J mol–1 K–1.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1561–1564, August, 2004.  相似文献   

11.
Thermodynamic parameters of the interpolymer reaction between poly-1,1,2-trichlorobuta1,3-diene and poly(ethylene imine) giving a polymer-polymer compound (incorporating the starting components in a molar ratio of 1 : 2) have been determined by calorimetry. The enthalpy (H°m), entropy (S°m), and Gibbs function (G°m) for this reaction are negative over the whole temperature range studied. The enthalpy of the reaction in chloroform at 298.15 K is about two times smaller, due to the difference in the enthalpies of dissolution of the starting polymers and the enthalpy of swelling of the interpolymer in the same solvent. The glass transition temperature of the interpolymer lies between those of the starting polymers and coincides with the value calculated from the Fox equation. The heat capacity of the interpolymer is smaller than additive values calculated fromC p ° of the starting polymers. From the experimentally determinedC p ° for the polymers, the thermodynamic functionsC p ° (T),H°(T) – H°(O), andS°(T) were calculated for the 0–330 K temperature range, and their configurational entropiesS c ° were estimated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2474–2478, October, 1996.  相似文献   

12.
The standard molar enthalpies of vaporization l g H m º of 2,5-dimethylfuran, 2-tert-butylfuran, 2,5-di-tert-butylfuran, cyclopentenyl methyl ether, cyclohexenyl methyl ether, and tert-amyl methyl ether were obtained from the temperature variation of the vapor pressure measured in a flow system. The standard (p° = 0.1 MPa) molar enthalpies of formation f H m º (1) at the temperature T = 298.15 K were measured using combustion calorimetry for 2,5-dimethylfuran, 2-tert-butylfuran, and 2,5-di-tert-butylfuran. From the derived standard molar enthalpies of formation for gaseous compounds, ring correction terms and non-nearest neighbor interactions useful in the application of the Benson group additivity scheme were calculated.  相似文献   

13.
The standard (p° = 0.1 MPa) molar enthalpies of formation fm (1 or cr) at the temperature T = 298.15 K were determined by using combustion calorimetry for -ethyl-styrene (A), -iso-propyl-styrene (B), -tert-butyl-styrene (C), 1,1-di-phenyl-ethene (D), tri-phenyl-ethene (E), and tetra-phenyl-ethene (F). The standard molar enthalpies of vaporization l gm or sublimation cr gm of compounds A to F were obtained from the temperature variation of the vapor pressure measured in a flow system. Molar enthalpies of fusion cr lm of solid compounds were measured by d.s.c. Resulting values of fm (g) were obtained at the temperature T = 298.15 K and used to derive strain enthalpies of phenylalkenes. The interactions of the substituents are discussed in terms of deviations of fm (g)from the group additivity rules. These values provide a further improvement on the group-contribution methodology for estimation of the thermodynamic properties of organic compounds.  相似文献   

14.
The first and second molal dissociation quotients of malonic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of malonic acid/bimalonate solutions was measured relative to a standard aqueous HCl solution from 0 to 100°C over 25° intervals at five ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and available literature data were treated in the all anionic form by a seven-term equation. This treatment yielded the following thermodynamic quantities for the first acid dissociation equilibrium at 25°C: logK 1a =-2.852±0.003, H 1a /o =0.1±0.3 kJ-mol–1, S 1a o =–54.4±1.0 J-mol–1-K–1, and C p,1a o =–185±20 J-mol–1-K–1. Measurements of the bimalonate/malonate system were made over the same intervals of temperature and ionic strength. A similar regression of the present and previously published equilibrium quotients using a seven-term equation yielded the following values for the second acid dissociation equilibrium at 25°C: logK2a=–5.697±0.001, H 2a o =–5.13±0.11 kJ-mol–1, S 2a o =–126.3±0.4 J-mol–1-K–1, and C p,2a o =–250+10 J-mol–1-K–1.Presented at the Second International Symposium on Chemistry in High Temperature Water, Provo, UT, August 1991.  相似文献   

15.
Summary The reversible complex formation between 2-(2-aminoethyl) benzimidazole (AEB) and nickel(II) was studied by stopped flow spectrophotometry at I = 0.30 mol dm–3. Both the neutral and monoprotonated form of AEB reacted to give the NiAEB2+ chelate. At 25 °C, the rates and activation parameters for the reactions NiII + AEB NiAEB2+ and NiII + AEBH+ NiAEB2+ + H+ are k f L(dm–3 mol–1 s–1) = (2.17 ± 0.24) × 103, H (kJ mol–1) = 40.0 ± 0.8, S (JK–1 mol–1) = – 47 ± 3 and k inff pHL (dm3 mol–1 s–1) = 33 ± 10, H (kJ mol–1) = 42.0 ±2.7, S (JK–1 mol–1) = – 72 ± 9. The dissociation of NiAEB2+ was acid catalysed and k obs for this process increased linearly with [H+] in the 0.01–0.15 mol dm–3 (10–30 °C) range with k H(dm3 mol–1s–1) (25 °C) = 329 ± 6, H (kJ mol–1) = 40 ± 2 and S (JK–1 mol–1) = – 61 ± 8. The results also indicated that the formation of NiAEB2+ involves a chelation-controlled, rate-limiting process. Analysis of the S ° data for the acid ionisation of AEBH inf2 p2+ and the formation of NiAEB2+ showed that the bulky AEBH+ ion has a solvent structure breaking effect as compared to AEB [s aqS ° (AEBH+) – s aq ° (AEB) = 69 JK–1 mol–1], while AEBH inf2 p2+ is a solvent ordering ion relative to NiAEB2+ [s aq° (NiAEB2+) – ovS aq ° (AEBH inf2 p2+ ) = 11 JK–1 mol–1].Author to whom all correspondence should be directed.  相似文献   

16.
A differential scanning calorimeter (DSC) was modified for the determination of enthalpies of solution. The measurements were performed on aqueous solutions of the deoxy- and fluoro-deoxy derivatives of D-glucopyranose (Glu) where the OH group on the C1, C2, C3, and C6 is replaced by H (1HGlu, 2HGlu, 3HGlu, and 6HGlu) and by F (1FGlu, 2FGlu, 3FGlu, and 6FGlu), 4-deoxy 4-fluoro--D-glucopyranoside (4FGlu), 1-methoxy--D-glucopyranoside (MeOGlu), 1-phenoxy--D-glucopyranoside (PheOGlu), D-mannopyranose (Man), and 3-methoxy--D-glucopyranoside (3MeOGlu), at 15.1, 25.0, 35.0, and 45.1°C. The enthalpies of solution sH0(T) ranged from 1.00±0.25 kJ-mol–1 for 6HGlu at 15.1°C to 20.4±1.4 for PhOGlu at 45.1°C and were in good agreement with literature values for Man, Glu, MeOGlu, and 3MeOGlu at 25.0 and 35.0°C and for MeOMan and 2HGlu at 35.0°C. sH0(T) for the derivatives were then extrapolated up to the melting temperature Tm and compared with their enthalpies of fusion, fH also determined from DSC measurements. If the agreement between sH0(Tm) and fH was within the 95% confidence level, then it was concluded that intermolecular interactions between the carbohydrate molecules in the liquid phase were the same as between the carbohydrate and water molecules in the solution phase. This agreement was observed for aqueous solutions of Man, Glu, MeOGlu, 3HGlu, 3FGlu, and 6FGlu.  相似文献   

17.
Complex formation of copper(II) with N,N-dimethylformamide(DMF) has been investigated calorimetrically in acetonitrile at 25°C. Calorimetric titration curves obtained are explained in terms of formation of [Cu(dmf) n ]2+ (n=1–4, 6) and their formation constants, enthalpies and entropies were determined. Formation of [Cu(dmf)5]2+ is uncertain. The stepwise enthalpies S 3 0 and entropies S n 0 at each consecutive step are all negative except for S 3 0 . The overall enthalpies of formation of [Cu(dmf)6]2+ is –(77.8±5.4) kJ-mol–1, which is compared with the enthalpy of transfer of copper(II) ion, H t o =–79.7 kJ-mol–1, from acetonitrile to DMF.  相似文献   

18.
The enthalpies of combustion (H comb) of 13 primary, secondary, and tertiary alkylphoshines in the condensed state were calculated using the equation H comb = –860.7 – 107.0N, where N is the number of valent (bond-forming) electrons. This equation can be used for the calculation of enthalpies of combustion and formation of phosphoric acid esters.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1693–1694, August, 2004.  相似文献   

19.
The thermochemical study of cubane-1,4-dicarboxylic acid (1), diethyl cubane-1,4-dicarboxylate (2), diisopropyl cubane-1,4-dicarboxylate (3), and bis(2-fluoro-2,2-dinitro)ethyl cubane-1,4-dicarboxylate (4) was performed. The standard enthalpies of combustion (c H°) and formation (f H°) of these compounds were estimated using the method of combustion in a calorimetric bomb in an oxygen atmosphere. Using the additive group method, calculated values for f H° of these substances which agreed satisfactorily with the experimental ones were obtained. The strain energies (E s) of the cubic structure of derivatives1–4 were calculated. It was concluded thatE s did not change on substitution of hydrogen atoms in cubane for various functional groups and was equal toE s of the structure of cubane itself. The reliability of the single published value of f H° in the cubane crystal state, 541.8 kJ mol–1 (129.5 kcal mol–1), was confirmed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2471–2473, October, 1996.  相似文献   

20.
The solubilities of CdCO3 (otavite) in aqueous NaClO4 solutions have been investigated as a function of ionic strength (0.15 I/mol-kg–1 5.35, 25°C) and temperature (25°C T 75°C, I = 1.00 mol-kg–1). A new Chemsage optimization routine was employed to simultaneously evaluate solubility data from this work and other sources, as well as standard electrode potentials determined at different ionic strengths. With the Pitzer equations the solubility constants, , were extrapolated to infinite dilution resulting in log and the ternary ion-interaction parameters SNa,Cd = 0.19 and at 25°C. In addition, the following set of thermodynamic quantities can be derived from the present solubility data for otavite: f G = –674.2±0.6 kJ-mol–1; f H = –755.3±3.4 kJ-mol–1; S = 93±10 J-mol–1K–1. However, the present solubility data are also consistent with a recent determination of the standard entropy of otavite which leads to a recommended set of thermodynamic quantities [f G (CdCO3) = –674.2±0.6; f H (CdCO3) = –752.1±0.6; S (CdCO3) = 103.9±0.2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号