首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper, the thermodynamic properties of a rotating Bose gas in harmonic trap are investigated. In particularly, the condensate fraction, critical temperature and heat capacity are analytically calculated. A simple semiclassical approximation, which is the density of state approach, is suggested. This approach is able to include the effects, such as the finite size and the chemical potential when becomes equal to the energy of the lowest energy state, that altered the rotating ideal Bose gas simultaneously. The calculated results show that the thermodynamic properties depend strongly on the rotation rate. The rapid rotation leads to a highly anisotropic confinement potential. The possibility for dimensionality cross-over to lower dimensions for this system is discussed. We compare the outcome results with the experimental measured data of Coddington et al. [Phys. Rev. A 70, 063607 (2004)].  相似文献   

2.
The thermodynamic properties of the trapped ideal spinor Bose gas are studied in details with the constraints of fixed total number of atoms N, and magnetization M. The double transition temperatures, their corresponding corrections due to finite particle number, and the population of each component are investigated. The generalization to the ideal spinor Bose gas of hyperfine quantum number F is also discussed. We propose that the order and disorder parameters to describe the symmetry broken of condensation.  相似文献   

3.
Bose gases confined in highly elongated harmonic traps are investigated over a wide range of interaction strengths using quantum Monte Carlo techniques. We find that the properties of a Bose gas under tight transverse confinement are well reproduced by a 1D model Hamiltonian with contact interactions. We point out the existence of a unitary regime, where the properties of the quasi-1D Bose gas become independent of the actual value of the 3D scattering length a(3D). In this unitary regime, the energy of the system is well described by a hard-rod equation of state. We investigate the stability of quasi-1D Bose gases with positive and negative a(3D).  相似文献   

4.
The mechanism of color confinement as a consequence of an unbroken non-abelian gauge symmetry and asymptotic freedom is elucidated and compared with that of other models based on an analogy with the type II superconductor. It is demonstrated that a sufficient condition for color confinement is given by where denotes the renormalization constant of the color gauge field. It is shown that this condition is actually satisfied in quantum chromodynamics and that some of the characteristic features of other models follow from it. Received: 20 September 2001 / Published online: 23 November 2001  相似文献   

5.
A field theoretical renormalization group approach at two loop level is applied to the homogeneous spin-1 Bose gas in order to investigate the order of the phase transition. The beta function of the system with d=4-epsilon dimensions is determined up to the third power of the coupling constants and the system's free energy on the border of the classical stability is given in next to leading order. It is found that the phase transition of the interacting spin-1 Bose gases with weak spin-dependent coupling constant values is of first order.  相似文献   

6.
Based on the classification scheme of phase transitions, we study the phase transitions for an ideal Bose gas with a finite number of particles confined in a three-dimensional quartic trap. We show that the phase transition of an ideal Bose gas in the three-dimensional quartic trap is of third order for finite particle numbers, quite different from the fact that the phase transition is of first order in the thermodynamic limit. We discuss the effects of finite particle numbers on the nature of the phase transitions, and determine the dependence of transition temperature on particle number.  相似文献   

7.
We consider an interacting homogeneous Bose gas at zero temperature in two spatial dimensions. The properties of the system can be calculated as an expansion in powers of g, where g is the coupling constant. We calculate the ground state pressure and the ground state energy density to second order in the quantum loop expansion. The renormalization group is used to sum up leading and subleading logarithms from all orders in perturbation theory. In the dilute limit, the renormalization group improved pressure and energy density are expansions in powers of the T 2B and T 2Bln(T 2B), respectively, where T 2B is the two-body T-matrix. Received 19 April 2002 Published online 13 August 2002  相似文献   

8.
We derive an exact analytic expression for the three-body local correlations in the Lieb-Liniger model of 1D Bose gas with contact repulsion. The local three-body correlations control the thermalization and particle loss rates in the presence of terms which break integrability, as is realized in the case of 1D ultracold bosons. Our result is valid not only at finite temperature but also for a large class of nonthermal excited states in the thermodynamic limit. We present finite temperature calculations in the presence of external harmonic confinement within local density approximation, and for a highly excited state that resembles an experimentally realized configuration.  相似文献   

9.
A two-dimensional lattice-gas model with square symmetry is investigated by using the real-space renormalization group (RSRG) approach with blocks of different size and symmetries. It has been shown that the precision of the method depends strongly not only on the number of sites in the block but also on its symmetry. In general, the accuracy of the method increases with the number of sites in the block. The minimal relative error in determining the critical values of the interaction parameters is equal to . Using the RSRG method, we have explored phase diagrams of both a two-dimensional Ising spin model and of a square lattice gas with lateral interactions between adparticles. We also have investigated the influence of the attractive and repulsive interactions on both the thermodynamic properties of the lattice gas and the diffusion of adsorbed particles over surface. We have calculated adsorption isotherms and coverage dependences of the pair correlation function, isothermal susceptibility and the chemical diffusion coefficient. In addition, we have included in our analysis the interaction of the activated particle in the saddle point with its nearest neighbors. We have also used Monte Carlo (MC) technique to calculate these dependences. Despite the fact that both methods constitute very different approaches, the correspondence of the numerical data is surprisingly good. Therefore, we conclude that the RSRG approach can be applied to characterize the thermodynamic and kinetic properties of systems of particles with strong lateral interactions. Received 1st September 1998 and Received in final form 8 March 2000  相似文献   

10.
O. Zobay 《Laser Physics》2009,19(4):700-724
We review some recent theoretical work on the phase transition of interacting Bose gases in the presence of external trapping potentials. A general framework for the study of such questions is presented which is based on the application of perturbative momentum-shell renormalization group methods to the trapped gas in the uncondensed phase. After giving an overview of this approach, we first establish its validity by comparing to previous results for homogeneous and harmonically trapped gases. Using this theoretical framework, we then examine various aspects of how external potentials influence the physics of condensation. (i) By studying the case of general power-law potentials and complemented by arguments from variational perturbation theory, it is quantitatively worked out how a growing inhomogeneity of the trapping potential diminishes nonperturbative effects at the transition. (ii) It is shown how by superimposing a weak periodic potentials on the homogeneous system, the characteristic nonperturbative momentum scale of critical interacting Bose gases can be probed. (iii) For a gas in a random potential, it is studied how condensation is affected by the combined influence of disorder effects and particle interactions.  相似文献   

11.
郝亚江  尹相国 《中国物理 B》2011,20(9):90501-090501
By combining the thermodynamic Bethe ansatz and local density approximation, we investigate the Yang—Yang thermodynamics of interacting one-dimensional Bose gases with anisotropic transversal confinement. It is shown that with the increase of anisotropic parameter at low temperature, the Bose atoms are distributed over a wider region, while at high temperature the density distribution is not affected obviously. Both the temperature and transversal confinement can strengthen the local pressure of the Bose gases.  相似文献   

12.
The relation between the bulk correlation length and the decay length of thermodynamic Casimir forces is investigated microscopically in two three-dimensional systems undergoing Bose-Einstein condensation: the perfect Bose gas and the imperfect mean-field Bose gas. For each of these systems, both lengths diverge upon approaching the corresponding condensation point from the one-phase side, and are proportional to each other. We determine the proportionality factors and discuss their dependence on the boundary conditions. The values of the corresponding critical exponents for the decay length and the correlation length are the same, equal to 1/2 for the perfect gas, and 1 for the imperfect gas.  相似文献   

13.
Using a strong disorder real-space renormalization group, we study the phase diagram of a fully disordered chain of interacting bosons. Since this approach does not suffer from runaway flows, it allows a direct study of the insulating phases, not accessible in a weak disorder perturbative treatment. We find that the universal properties of the insulating phase are determined by the details and symmetries of the on-site chemical-potential disorder. Three insulating phases are possible: (i) an incompressible Mott glass with a finite superfluid susceptibility, (ii) a random-singlet glass with diverging compressibility and superfluid susceptibility, (iii) a Bose glass with a finite compressibility but diverging superfluid susceptibility. In addition to characterizing the insulating phases, we show that the superfluid-insulator transition is always described by Kosterlitz-Thouless-like flows.  相似文献   

14.
Using mean-field theory for the Bardeen–Cooper–Schriefer (BCS) to the Bose–Einstein condensate (BEC) crossover we investigate the ground state thermodynamic properties of an interacting homogeneous Fermi gas. The interatomic interactions modelled through a finite range potential allows us to calculate the thermodynamic behaviour as a function of the potential parameters in the whole crossover region. We concentrate in studying the Contact variable, the thermodynamic conjugate of the inverse of the s-wave scattering length. Our analysis leads to predict a quantum phase transition – like in the case of large potential range. This finding is a direct consequence of the k-dependent energy gap.  相似文献   

15.
We analyze in detail the expansion of a 1D Bose gas after removing the axial confinement. We show that during its one-dimensional expansion the density of the Bose gas does not follow a self-similar solution. Our analysis is based on a nonlinear Schr?dinger equation with variable nonlinearity whose validity is discussed for the expansion problem, by comparing with an exact Bose-Fermi mapping for the case of an initial Tonks-Girardeau gas. For this case, the gas is shown to expand self-similarly, with a different scaling law compared to the one-dimensional Thomas-Fermi condensate.  相似文献   

16.
A theoretical model for the growth of single-wall carbon nanotubes produced by metal-catalyzed decomposition of hydrocarbons and fullerenes is presented. The growth process is treated as a thermodynamic equilibrium between carbon in the gas phase and carbon in the nanotube. The minimum possible nanotube diameters based on several published experimental conditions are calculated by combining the free energy of the reaction with an equation derived from elastic theory. The model predicts the possibility of generating nanotubes with extremely small diameters that are smaller than in the corresponding experiments. Received: 18 July 2001 / Accepted: 19 November 2001 / Published online: 4 March 2002  相似文献   

17.
Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. Here we apply the density matrix renormalization group to accurately determine the phase diagram for spin-1 bosons loaded on a one-dimensional lattice. The Mott lobes present an even or odd asymmetry associated to the boson filling. We show that for odd fillings the insulating phase is always in a dimerized state. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S = 1 Heisenberg model with biquadratic interaction.  相似文献   

18.
李伟  苏刚 《物理》2012,41(3):172-178
文章简述了数值重正化群方法的历史发展,包括威耳逊(Wilson)的数值重正化群算法,S.R.White的密度矩阵重正化群方法,以及近期迅速发展的处理强关联量子系统的几种张量网络态与张量网络算法.在此基础上,文章重点介绍了作者最近提出的用于研究量子多体系统热力学性质的线性张量重正化群方法,以及该方法在一维和二维量子系统中的应用.  相似文献   

19.
Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T(c), and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T(c).  相似文献   

20.
本文由一系列讲演组成,内容包括:临界现象与渗流,标度理论,位置空间重正化群与渗流,位置空间重正化群用于热力学相变,动量空间重正化群与高斯模型和动量空间重正化群用于S~4模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号