首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A stable and broad bandwidth multiwavelength erbium-doped fiber laser is proposed and demonstrated successfully. A nonlinear optical loop mirror which induces wavelength-dependent cavity loss and behaves as an amplitude equalizer is employed to ensure stable room-temperature multiwavelength operation. Up to 50 wavelengths lasing oscillations with wavelength spacing of 0.8 nm within a 3-dB spectral range of 1562-1605 nm has been achieved. The measured power fluctuation of each wavelength is about 0.1 dB within a 2-h period.  相似文献   

2.
A multiwavelength fiber ring laser that is based on an S-band erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) is developed. An optical switch is used to switch the multiwavelength fiber laser between S-band and L-band. This fiber laser can stably lase seven wavelengths in the S-band or 28 wavelengths in the L-band. Additionally, the lasing wavelengths with a signal-to-noise ratio of over 33 dB and a wavelength spacing of 100 GHz are demonstrated experimentally. The average powers of the lasing wavelength in the S-band and the L-band are −7.53 and −12.15 dBm, respectively.  相似文献   

3.
A stable and narrow wavelength spacing multiwavelength erbium-doped fiber laser is proposed and demonstrated. The laser can produce simultaneous dual- and triple-wavelength lasing oscillations with a narrow wavelength spacing of less than 0.1 nm via using a single fiber Bragg gratings written in polarization-maintaining (PM) fiber. By adjusting polarization controller, the wavelength spacing of dual-wavelength lasing oscillations can be tuned to as small as 0.032 nm. The maximum amplitude variation for every lasing wavelength is less than 0.5 dB. The room-temperature operation principle is based on the polarization hole burning and deeply saturated effect in an ordinary erbium-doped fiber ring laser (EDFRL). The laser has the advantages of simple all-fiber configuration, low cost, high stability and operating at room temperature.  相似文献   

4.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1598-5360
We experimentally demonstrated a new structure of a multiwavelength semiconductor optical amplifier (SOA) ring laser based on a fiber Sagnac loop filter that can generate up to 25 stable output lasing wavelengths at room temperature. By varying the length of a polarization-maintaining (PM) fiber within the Sagnac loop filter, the wavelength spacing between the output lasing wavelengths can be changed to a desired value. By tuning a polarization controller (PC) within the Sagnac loop filter, stable multiwavelength 1550-nm operation with up to 17 lasing lines within 3 dB power level variation and with a wavelength spacing of ∼0.8 nm was achieved. The optical signal-to-noise ratios (OSNRs) of all the lasing wavelengths are greater than 40 dB.  相似文献   

5.
We demonstrate a continuously wavelength-spacing-tunable and high-power multiwavelength fiber optical parametric oscillator based on the multiwavelength idler-output technique. The laser cavity for multiwavelength idler outputs is constructed by a pumped highly-nonlinear dispersion-shifted fiber as parametric gain medium, two highly-reflective chirped fiber Bragg gratings (CFBGs) and a superimposed CFBG as comb-like filter. At a pump power of 1.1 W, the idler output of 10 wavelengths around 1.56 μm is achieved with a wavelength spacing of 0.39 nm. The wavelength spacing can be continuously tuned from 0.39 to 1.0 nm by utilizing a cantilever beam-based chirp tuning method to change the FSR of the superimposed CFBG. Our experimental results show that the designed multiwavelength idler-output scheme can significantly increase the multiwavelength output power with a total output power of 98 mW and each idler-channel power of 16.3 mW.  相似文献   

6.
We report the comparisons of the influences of gain broadening on multiwavelength oscillations in YDFL and EDFL with typical commercial ytterbium- and erbium-doped Al/Ge silica fibers. Our experimental results show that both the YDF and the EDF exhibit inhomogeneous gain broadening, which allows the lasing lines to increase with the increase of the pump, however, multiwavelength oscillations of the EDFL are more stable than those of the YDFL, in particular, when the wavelength spacing is small. Moreover, the minimum wavelength spacing for stable multiwavelength operations of the YDFL and the EDFL are observed to be 1.0 and 0.8 nm at room temperature, and 0.8 and 0.25 nm at 77 K, respectively. This show that the inhomogeneous gain broadening of the EDF may be stronger than that of the YDF.  相似文献   

7.
Han YG  Lee SB  Moon DS  Chung Y 《Optics letters》2005,30(17):2200-2202
We propose and experimentally demonstrate a simple multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings without additional multichannel filters. The multiwavelength Raman laser output has a high extinction ratio of more than 45 dB. The multiwavelength output is so stable that the peak power fluctuation is less than 0.5 dB. The number of lasing wavelengths can be adjusted, corresponding to the properties of few-mode Bragg gratings with multiple resonant wavelengths. By the thermal tuning method, the lasing wavelength of each channel can be effectively controlled, and the laser's tunability is measured to be 10.5 pm/ degrees C.  相似文献   

8.
We demonstrate a multiwavelength fiber laser with ultradense wavelength spacing and ultrabroad bandwidth based on inhomogeneous loss mechanism with assistance of nonlinear polarization rotation. The inhomogeneous loss, implemented by incorporating a section of highly nonlinear fiber (HNLF) and a Sagnac filter in the laser cavity, can balance mode competition in erbium-doped fiber and result in ultradense multiwavelength generation. The bandwidth of the multiwavelength spectrum is greatly broadened owing to the intensity-dependent loss induced by nonlinear polarization rotation. Stable multiwavelength lasing with wavelength spacing of 0.08 nm and wavelength number up to 254 is achieved at room temperature. Moreover, multiwavelength tuning is realized through modifying polarization-dependent cavity loss.  相似文献   

9.
Han YG  Tran TV  Lee SB 《Optics letters》2006,31(6):697-699
We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than approximately 45 dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than approximately 0.2 dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.  相似文献   

10.
We propose a simple dual-wavelength Er-doped fiber laser configuration based on a dual-wavelength fiber Bragg grating written on the splice joint between two different fibers for wavelength-selective filter in the Sagnac loop interferometer. The wavelength separation between the adjacent lasing wavelengths is 1.12 nm and the side-mode suppression ratio (SMSR) is over 55 dB. The output power variation is less than 0.8 dB over a two-minute period. Moreover, the lasing wavelength can be effectively tuned using the thermal heating method.  相似文献   

11.
We experimentally demonstrate a simple-structure but efficient multiwavelength erbium-doped fiber laser based on nonlinear polarization rotation assisted by four-wave-mixing (FWM). Based on the combination of these two nonlinear mechanisms contributing to intensity-dependent loss to alleviate mode competition, the stable multiwavelength operation at room temperature can be realized in a length of dispersion-shifted fiber. We achieved up to 38-wavelength generation with a spacing of ∼0.4 nm in the laser. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range.  相似文献   

12.
We experimentally demonstrate a multiwavelength Brillouin-erbium fiber laser in two configurations; uni-directional and bi-directional propagation of Brillouin pump and Brillouin Stokes signals through an Erbium-doped fiber gain. The influence of these configurations on the performance of the output parameters in terms of lasing threshold, output channel generation and tuning range of the generated output channels are investigated. We discovered that there is a trade-off between these two fiber laser configurations. The uni-directional amplifier configuration provides greater tuning range of 46.8 nm against 23 nm at maximum Brillouin pump power of 2 mW and 1480-nm pump power of 130 mW. On the other hand, the bi-directional amplifier configuration provides 13 output channels against 6 output channels obtained from the uni-directional amplifier configuration at the same pumping powers. Nevertheless, the bi-directional amplifier configuration requires much lower pump power to initiate lasing.  相似文献   

13.
In this paper, the mixed-cascaded Raman scattering has been developed to investigate multiwavelength phosphosilicate Raman fiber lasers (MRFLs). With a tunable Yb3+-doped double-clad fiber laser (YDCFL) as the Raman pump source, we propose a compact and waveband-switchable (from the O- to U-band) MRFL using two- or three-mixed-cascaded Raman scattering of both SiO2/GeO2 and P2O5 in a P-doped fiber. We also confirm experimentally the feasibility of the proposed mixed-cascaded MRFL. When a 1064 nm YDCFL was used to pump a spool of 1-km P-doped fiber, the compact linear-cavity MRFLs in the O- and L-band operation were obtained, respectively, based on the two- and three-mixed cascaded Raman scattering. Up to 16-wavelength stable oscillation around 1320 nm has been observed with a spacing of 0.40 nm and an extinction ratio >30 dB. 12 lasing lines around 1601 nm have also been achieved with a spacing of 0.58 nm. The multiwavelength output powers as high as 108 and 138 mW were obtained in the O- and L-band operations, respectively. The wavelength spacing of the MRFLs is flexibly adjustable, and the peak wavelength of each lasing line is continuously tunable over the wavelength spacing. In addition, the important characteristics of the mixed-cascaded MRFLs, including the linewidth broadening, the signal-to-noise ratio and the conversion efficiency, are discussed.  相似文献   

14.
An all-fiber actively Q-switched Yb-doped laser is presented. Q-switching is performed by modulating a fiber Bragg grating via a magnetostrictive rod which is fixed to the fiber at the position of the grating. By exposing the rod to a changing magnetic field, the rod is stretched and relaxed causing the Bragg wavelength of the grating to shift and thereby changes the Q-factor of the cavity. Using Yb-doped fiber, pulses at 1052 nm are obtained at repetition rates from 1 to 200 kHz. At 75 kHz, 0.5 μJ pulses with peak powers of 3 W can be produced when 180 mW of pump power is applied. To the knowledge of the authors, this is the first all-fiber actively Q-switched Yb-doped laser presented to date.  相似文献   

15.
The authors propose and demonstrate a method to compensate the thermal drift of magnetostriction based Q-switched fiber lasers, which is caused by the eddy currents induced in the Terfenol-D magnetostrictive actuators. The consequent wavelength detuning between the fiber gratings of the laser is passively compensated by the use of Monel 400 as thermal actuator of the non-modulated grating. A highly stable pulsed signal is achieved in the range of 1 Hz-5 kHz, with a wavelength detuning between gratings maintained below 10 pm. Furthermore, an optimization of the use of the pump power is proposed, utilizing part of it for simultaneously pumping a fiber optic based amplification stage.  相似文献   

16.
An analytic model is developed for evaluating the extractable energy from high energy pulsed erbium-ytterbium co-doped fiber amplifiers and lasers. The energy extraction capabilities under the limitation of spurious lasing, due to amplified spontaneous emission (ASE), are mapped for various numerical apertures, single and multi transverse mode evolution and operating wavelengths. The model provides an assessment for the maximum pulse energy that can be extracted from a given erbium-ytterbium co-doped fiber. In addition, the model can be used to determine the repetition rate and optimal length, under which the laser source will be optimally operated in order to achieve a required extracted energy, without spurious lasing. The results show a clear advantage in using 915 nm wavelength pump source over 975 nm, at high average power operation, due to augmented 1 μm ASE at 975 nm pump wavelength, as a result of the Yb3+ population inversion.  相似文献   

17.
We demonstrate a tunable and switchable dual-wavelength passively mode-locked fiber ring laser in the anomalous dispersion regime that generates high-energy pulses at a sub-100 kHz repetition rate. The nonlinear polarization rotation (NPR) technique is employed in this configuration to allow for passively mode-locked operation. By exploiting the intensity-dependent loss caused by NPR, the mode competition could be efficiently alleviated. Moreover, taking advantage of the intrinsic spectral filter induced by the intracavity birefringence, the dual-wavelength separations as well as the wavelength lasing locations could be flexibly tuned by properly rotating the polarization controller. With a repetition rate of 85.8 kHz, the laser delivers the single pulse energy of 198 nJ at a pump power of 250 mW. The combination of high per-pulse energy and flexible tunability in this fiber laser is useful for practical applications.  相似文献   

18.
We report on the possibility of Q-switching a continuously pumped CO2 laser using a scanning Michelson interferometer as an end mirror, instead of the habitual well-known strategies. This method, in addition to its simplicity, produces free tail relaxation pulses having duration of about 1.3 μs, which is comparable to what can be obtained when using a saturable absorber. A pulse repetition frequency as high as 90 kHz is obtained.  相似文献   

19.
We have demonstrated an adjustable double-clad Yb3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.  相似文献   

20.
We propose and experimentally demonstrate a stable dual-wavelength erbium-doped polarization-maintaining (PM) fiber laser with tunable wavelength spacing using an all-PM linear cavity that makes use of two reflection peaks from the PM fiber Bragg grating (PM-FBG). Experimental results show stable dual lasing lines with a wavelength separation of ∼0.22 nm and a large optical signal-to-noise ratio (OSNR) of over 40 dB under room temperature. By applying axial strain to the PM-FBG, the center wavelengths of the two lasing lines can be tuned over several nanometers and the wavelength separation between the lasing lines can also be tuned to as small as 0.05 nm, which, to our knowledge, is the smallest wavelength spacing ever obtained from a stable room-temperature dual-wavelength fiber laser. The proposed laser configuration has the advantages of simple structure, low loss, stable dual-wavelength operation and a very small lasing linewidth of ∼5 kHz . PACS 42.55.Wd; 42.81.-i; 42.81.Gs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号