首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this paper, we consider quantitative stability analysis for two-stage stochastic linear programs when recourse costs, the technology matrix, the recourse matrix and the right-hand side vector are all random. For this purpose, we first investigate continuity properties of parametric linear programs. After deriving an explicit expression for the upper bound of its feasible solutions, we establish locally Lipschitz continuity of the feasible solution sets of parametric linear programs. These results are then applied to prove continuity of the generalized objective function derived from the full random second-stage recourse problem, from which we derive new forms of quantitative stability results of the optimal value function and the optimal solution set with respect to the Fortet–Mourier probability metric. The obtained results are finally applied to establish asymptotic behavior of an empirical approximation algorithm for full random two-stage stochastic programs.  相似文献   

2.
3.
For our introduced mixed-integer quadratic stochastic program with fixed recourse matrices, random recourse costs, technology matrix and right-hand sides, we study quantitative stability properties of its optimal value function and optimal solution set when the underlying probability distribution is perturbed with respect to an appropriate probability metric. To this end, we first establish various Lipschitz continuity results about the value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of linear constraints. The obtained results extend earlier results about quantitative stability properties of stochastic integer programming and stability results for mixed-integer parametric quadratic programs.  相似文献   

4.
In order to derive continuity and stability of two-stage stochastic programs with mixed-integer recourse when all coefficients in the second-stage problem are random, we first investigate the quantitative continuity of the objective function of the corresponding continuous recourse problem with random recourse matrices. Then by extending derived results to the mixed-integer recourse case, the perturbation estimate and the piece-wise lower semi-continuity of the objective function are proved. Under the framework of weak convergence for probability measure, the epi-continuity and joint continuity of the objective function are established. All these results help us to prove a qualitative stability result. The obtained results extend current results to the mixed-integer recourse with random recourse matrices which have finitely many atoms.  相似文献   

5.
Expected recourse functions in linear two-stage stochastic programs with mixed-integer second stage are approximated by estimating the underlying probability distribution via empirical measures. Under mild conditions, almost sure uniform convergence of the empirical means to the original expected recourse function is established.  相似文献   

6.
Stochastic programming with recourse usually assumes uncertainty to be exogenous. Our work presents modelling and application of decision-dependent uncertainty in mathematical programming including a taxonomy of stochastic programming recourse models with decision-dependent uncertainty. The work includes several ways of incorporating direct or indirect manipulation of underlying probability distributions through decision variables in two-stage stochastic programming problems. Two-stage models are formulated where prior probabilities are distorted through an affine transformation or combined using a convex combination of several probability distributions. Additionally, we present models where the parameters of the probability distribution are first-stage decision variables. The probability distributions are either incorporated in the model using the exact expression or by using a rational approximation. Test instances for each formulation are solved with a commercial solver, BARON, using selective branching.  相似文献   

7.
Stability analysis for stochastic programs   总被引:4,自引:0,他引:4  
For stochastic programs with recourse and with (several joint) probabilistic constraints, respectively, we derive quantitative continuity properties of the relevant expectation functionals and constraint set mappings. This leads to qualitative and quantitative stability results for optimal values and optimal solutions with respect to perturbations of the underlying probability distributions. Earlier stability results for stochastic programs with recourse and for those with probabilistic constraints are refined and extended, respectively. Emphasis is placed on equipping sets of probability measures with metrics that one can handle in specific situations. To illustrate the general stability results we present possible consequences when estimating the original probability measure via empirical ones.  相似文献   

8.
We propose an algorithm for multistage stochastic linear programs with recourse where random quantities in different stages are independent. The algorithm approximates successively expected recourse functions by building up valid cutting planes to support these functions from below. In each iteration, for the expected recourse function in each stage, one cutting plane is generated using the dual extreme points of the next-stage problem that have been found so far. We prove that the algorithm is convergent with probability one.  相似文献   

9.
We consider an optimization problem in which some uncertain parameters are replaced by random variables. The minimax approach to stochastic programming concerns the problem of minimizing the worst expected value of the objective function with respect to the set of probability measures that are consistent with the available information on the random data. Only very few practicable solution procedures have been proposed for this problem and the existing ones rely on simplifying assumptions. In this paper, we establish a number of stability results for the minimax stochastic program, justifying in particular the approach of restricting attention to probability measures with support in some known finite set. Following this approach, we elaborate solution procedures for the minimax problem in the setting of two-stage stochastic recourse models, considering the linear recourse case as well as the integer recourse case. Since the solution procedures are modifications of well-known algorithms, their efficacy is immediate from the computational testing of these procedures and we do not report results of any computational experiments.  相似文献   

10.
This paper deals with stochastic programming problems where the probability distribution is not explicitly known. We suppose that the probability distribution is defined by crisp or fuzzy inequalities on the probability of the different states of nature. We formulate the problem and present a solution strategy that uses the α-cut technique in order to transform our problem into a stochastic program with linear partial information on probability distribution (SPI). The obtained SPI problem is than solved using two approaches, namely, a chance constrained approach and a recourse approach. For the recourse approach, a modified L-shaped algorithm is designed and illustrated by an example.  相似文献   

11.
We introduce stochastic integer programs with second-order dominance constraints induced by mixed-integer linear recourse. Closedness of the constraint set mapping with respect to perturbations of the underlying probability measure is derived. For discrete probability measures, large-scale, block-structured, mixed- integer linear programming equivalents to the dominance constrained stochastic programs are identified. For these models, a decomposition algorithm is proposed and tested with instances from power optimization.  相似文献   

12.
《Optimization》2012,61(9):1983-1997
For mixed-integer quadratic program where all coefficients in the objective function and the right-hand sides of constraints vary simultaneously, we show locally Lipschitz continuity of its optimal value function, and derive the corresponding global estimation; furthermore, we also obtain quantitative estimation about the change of its optimal solutions. Applying these results to two-stage quadratic stochastic program with mixed-integer recourse, we establish quantitative stability of the optimal value function and the optimal solution set with respect to the Fortet-Mourier probability metric, when the underlying probability distribution is perturbed. The obtained results generalize available results on continuity properties of mixed-integer quadratic programs and extend current results on quantitative stability of two-stage quadratic stochastic programs with mixed-integer recourse.  相似文献   

13.
Deterministic sample average approximations of stochastic programming problems with recourse are suitable for a scenario-based parallelization. In this paper the parallelization is obtained by using an interior-point method and a Schur complement mechanism for the interior-point linear systems. However, the direct linear solves involving the dense Schur complement matrix are expensive, and adversely affect the scalability of this approach. We address this issue by proposing a stochastic preconditioner for the Schur complement matrix and by using Krylov iterative methods for the solution of the dense linear systems. The stochastic preconditioner is built based on a subset of existing scenarios and can be assembled and factorized on a separate process before the computation of the Schur complement matrix finishes on the remaining processes. The expensive factorization of the Schur complement is removed from the parallel execution flow and the scaling of the optimization solver is considerably improved with this approach. The spectral analysis indicates an exponentially fast convergence in probability to 1 of the eigenvalues of the preconditioned matrix with the number of scenarios incorporated in the preconditioner. Numerical experiments performed on the relaxation of a unit commitment problem show good performance, in terms of both the accuracy of the solution and the execution time.  相似文献   

14.
15.
We derive formulas for constants of strong convexity (CSCs) of expectation functions encountered in two-stage stochastic programs with linear recourse. One of them yields a CSC as the optimal value of a certain quadratically constrained quadratic program, another one in terms of the thickness of the feasibility polytope of the dual problem associated to the recourse problem. CSCs appear in Hoelder-type estimates relating the distance of optimal solution sets of stochastic programs to a suitable distance of underlying probability distributions.  相似文献   

16.
The mean-risk stochastic mixed-integer programs can better model complex decision problems under uncertainty than usual stochastic (integer) programming models. In order to derive theoretical results in a numerically tractable way, the contamination technique is adopted in this paper for the postoptimality analysis of the mean-risk models with respect to changes in the scenario set, here the risk is measured by the lower partial moment. We first study the continuity of the objective function and the differentiability, with respect to the parameter contained in the contaminated distribution, of the optimal value function of the mean-risk model when the recourse cost vector, the technology matrix and the right-hand side vector in the second stage problem are all random. The postoptimality conclusions of the model are then established. The obtained results are applied to two-stage stochastic mixed-integer programs with risk objectives where the objective function is nonlinear with respect to the probability distribution. The current postoptimality results for stochastic programs are improved.  相似文献   

17.
We consider general two-stage SMIPs with recourse, in which integer variables are allowed in both stages of the problem and randomness is allowed in the objective function, the constraint matrices (i.e., the technology matrix and the recourse matrix), and the right-hand side. We develop a hierarchy of lower and upper bounds for the optimal objective value of an SMIP by generalizing the wait-and-see solution and the expected result of using the expected value solution. These bounds become progressively stronger but generally more difficult to compute. Our numerical study indicates the bounds we develop in this paper can be strong relative to those provided by linear relaxations. Hence this new bounding approach is a complementary tool to the current bounding techniques used in solving SMIPs, particularly for large-scale and poorly formulated problems.  相似文献   

18.
In this paper, stochastic programming problems are viewed as parametric programs with respect to the probability distributions of the random coefficients. General results on quantitative stability in parametric optimization are used to study distribution sensitivity of stochastic programs. For recourse and chance constrained models quantitative continuity results for optimal values and optimal solution sets are proved (with respect to suitable metrics on the space of probability distributions). The results are useful to study the effect of approximations and of incomplete information in stochastic programming.This research was presented in parts at the 4th International Conference on Stochastic Programming held in Prague in September 1986.  相似文献   

19.
Quantitative stability in stochastic programming   总被引:1,自引:0,他引:1  
In this paper we study stability of optimal solutions of stochastic programming problems with fixed recourse. An upper bound for the rate of convergence is given in terms of the objective functions of the associated deterministic problems. As an example it is shown how it can be applied to derivation of the Law of Iterated Logarithm for the optimal solutions. It is also shown that in the case of simple recourse this upper bound implies upper Lipschitz continuity of the optimal solutions with respect to the Kolmogorov—Smirnov distance between the corresponding cumulative probability distribution functions.  相似文献   

20.
Computational Optimization and Applications - In this paper, we extend the adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse matrix and fixed cost...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号