首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying early cellular events in response to a chemotherapy drug treatment, in particular at low doses that will destroy the highest possible number of cancer cells, is an important issue in patient management. In this study, we employed Fourier transform infrared spectroscopy as a potential tool to access such information. We used as model the non-small cell lung cancer cell line, Calu-1. They were exposed to cytostatic doses (0.1 to 100 nM for 24, 48 and 72 h) of gemcitabine, an anti-tumour drug, currently used in treatment of lung cancer patients. In these conditions, inhibition of cell proliferation ranges from weak (≤5%), to moderate (∼23%), to high (82–95%) without affecting cell viability. Following drug treatment as a function of doses and incubation times, the spectra of cell populations and of individual cells were acquired using a bench-top IR source and a synchrotron infrared microscope. It is demonstrated that spectral cell response to gemcitabine is detectable at sublethal doses and that effects observed on cell populations are similar to those from single cells. Using cluster analysis, spectra could be classified in two main groups: a first group that contains spectra of cells exhibiting a weak or moderate proliferation rate and a second group with spectra from cells presenting a high growth inhibition. These results are promising since they show that effects of subtoxic doses can also be monitored at the single-cell level with the clinical implications that this may have in terms of patient benefit and response to chemotherapy.  相似文献   

2.
Crocus sativus L., commonly known as saffron, is the raw material for one of the most expensive spice in the world, and it has been used in folk medicine for centuries. We investigated the potential of the ethanolic extract of saffron to induce cytotoxic and apoptosis effects in carcinomic human alveolar basal epithelial cells (A549), a commonly used cell culture system for in vitro studies on lung cancer. The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of the ethanolic extract of saffron for two consecutive days. Cell viability was quantitated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using annexin V–fluorescein isothiocyanate by flow cytometry. Saffron could decrease the cell viability in the malignant cells as a concentration- and time-dependent manner. The IC50 values against the A549 cell lines were determined as 1,200 and 650 μg/ml after 24 and 48 h, respectively. Saffron-induced apoptosis of the A549 cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells that induced apoptotic cell death, is involved in the toxicity of saffron. It might be concluded that saffron could cause cell death in the A549 cells, in which apoptosis plays an important role. Saffron could also be considered as a promising chemotherapeutic agent in lung cancer treatment in future.  相似文献   

3.
The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates for extended periods of time to increase selective tumor cell kill through apoptosis. The focus of the present preclinical study is on mPDT treatment of malignant brain tumors, in which selectivity tumor cell killing versus damage to normal brain is critical. Previous studies have shown that low‐dose PDT using 5‐aminolevulinic acid (ALA)‐induced protoporphyrin IX(PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. On the basis of the levels of apoptosis achieved and model calculations of brain tumor growth rates, metronomic delivery or multiple PDT treatments, such as hyperfractionation, are likely required to produce enough tumor cell kill to be an effective therapy. In vitro studies confirm that ALA‐mPDT induces a higher incidence of apoptotic (terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate, sodium salt nick‐end labeling positive) cells as compared with an acute, high‐dose regimen (ALA‐αPDT). In vivo, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of devices for extended light delivery while allowing unencumbered movement. In rat models, ALA administration via the drinking water has been accomplished at very high doses (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectro‐fluorimetry of tumor (9L gliosarcoma) and normal brain demonstrates a 3–4 fold increase in the tumor‐to‐brain ratio of PpIX concentration, without evidence of toxicity. After mPDT treatment, histological staining reveals extensive apoptosis within the tumor periphery and surrounding microinvading colonies that is not evident in normal brain or tumor before treatment. Prototype light sources and delivery devices were found to be practical, either using a laser diode or light‐emitting diode (LED) coupled to an implanted optical fiber in the rat model or a directly implanted LED using a rabbit model. The combined delivery of both drug and light during an extended period, without compromising survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.  相似文献   

4.
Apoptosis, or programmed cell death, is an essential process affecting homeostasis of cell growth, development, and the elimination of damaged or dangerous cells. Inappropriate cell death caused by oxidative stress has been implicated in the development of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and stroke. On the other hand, a defect in the cell death process leads to the development of cancer. For example, the main player of apoptosis, p53, is defective in many of the human cancers. Apoptosis is regulated by the interplay of pro-apoptotic and anti-apoptotic proteins from the Bcl-2 family and caspases. In particular, specific modulators of the activity of Caspase 3 could be very important for the development of therapies for diseases such as neurodegeneration and cancer. In this study, two VHHs specific to Caspase 3 (VhhCasp31 and VhhCasp32) were isolated from a heavy chain antibody variable domain (VHH) phage display library and tested for their apoptosis-modulating effects. While VhhCasp31 was found to be antagonistic towards Caspase 3, VhhCasp32 was agonistic. Furthermore, when expressed as intrabodies in SHSY-5Y neuroblastoma cells, VhhCasp31 rendered cells resistant to oxidative-stress-induced apoptosis, whereas VhhCasp32 resulted in apoptosis. These VHH antagonist and agonist of apoptosis could have potential for the development of therapeutics for neurodegenerative diseases and cancer, respectively.  相似文献   

5.
Photodynamic therapy (PDT), a cancer treatment using a photosensitizer and visible light, has been shown to induce apoptosis or necrosis. We report here that Purpurin-18 (Pu18) in combination with light induces rapid apoptotic cell death in the human leukemia cell line (HL60) at low doses and necrosis at higher concentrations. Cells treated with Pu18 and light under apoptotic conditions exhibited DNA laddering and an increase in both cellular content of subdiploid DNA and externalization of phosphatidylserine (PS), indicating DNA fragmentation and loss of membrane phospholipid asymmetry. In the absence of light activation, Pu18 at nanomolar concentrations had no detectable cytotoxic effect. Caspase-3 activity was increased even after 1 h from treatment with low doses of Pu18 and light. The PS exposure and nuclear features of apoptosis were prevented by treatment of cells before illumination with caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK). Conversely, the caspase-1 inhibitor, acetyl-Tyr-Val-Ala-Asp-aldehyde (Ac-YVAD-CHO) failed to suppress the apoptosis. No protective effect of the three caspase inhibitors was observed when the cells were exposed to necrotic concentrations of Pu18 and light. Our results show that caspase-3, but not caspase-1, is involved in the signaling of apoptotic events in PDT with Pu18-induced apoptosis of HL60 cells. Moreover, both the time course of PS exposure and the effect of caspase inhibitors on it indicate that it is regulated in the same manner as DNA fragmentation.  相似文献   

6.
A recent screen for compounds that selectively targeted pancreatic cancer cells isolated UA62784. We found that UA62784 inhibits microtubule polymerization in?vitro. UA62784 interacts with tubulin dimers ten times more potently than colchicine, vinblastine, or nocodazole. Competition experiments revealed that UA62784 interacts with tubulin at or near the colchicine-binding site. Nanomolar doses of UA62784 promote the accumulation of mammalian cells in mitosis, due to aberrant mitotic spindles, as shown by immunofluorescence and live cell imaging. Treatment of cancerous cell lines with UA62784 is lethal, following activation of apoptosis signaling. By monitoring mitotic spindle perturbations and apoptosis, we found that the effects of UA62784 and of some known microtubule-depolymerizing drugs are additive. Finally, high content screening of H2B-GFP HeLa cells revealed that low doses of UA62784 and vinblastine potentiate each other to inhibit proliferation.  相似文献   

7.
There are many types of researches investigating anticancer therapeutics for breast cancer therapy. Zinc oxide nanoparticles (ZnONPs) as an efficient drug delivery system, has been widely being used in various biomedical applications. In the current study, we synthesized ZnONP applying Rheum rhaponticum Waste (RRW) as a novel bio-platform to investigate its anticancer impacts on MCF7 breast cancer cells compared with normal Human HFF and HDF cells. In this regard, RRW was triggered to synthesize the ZnONPs. Then, they were characterized by XRD, FTIR, TEM, and SEM analysis. Next, the MCF-7, HFF, and HDF cell lines were cultured and treated as the following plane: Incubation of all cell lines for 72, 48, and 24 hours at the presence of different ZnONPs doses. Finally, the cell morphology, BCL2- BAX genes expression profile and AO/PI-fluorescent cell staining on the 48-hour incubated cells were analyzed to check the ZnONP apoptotic activity. Moreover, the ZnONP antioxidant activity was analyzed by a DPPH antioxidant test. We produced the 30 nm ZnONPs which significantly increased the BAX and decreased the BCL-2 gene expression. According to the results including the Sub G1 enhancement peaks, apoptotic hallmarks, MTT assay, and the AO/PI-fluorescent stained cells, ZnONPs can specifically induce apoptotic death in MCF7 breast cancer cells compared with normal HFF and HDF cells. The IC50 values of MCF-7 in 72, 48, and 24 hr were measured at 8, 11, and 12 μg/ml in 72, 48, and 24 hr, respectively. This is while the mentioned values in the normal cells (HFF, HDF) were estimated at higher treatment doses. In conclusion, we suggest that the ZnONPs have the potential to be applied as a safe cell-specific apoptosis inducer in breast cancer treatment. However, there are many challenges that need to be clarified for applying them as an efficient anticancer agent.  相似文献   

8.
Apoptosis, or programmed cell death, is a cellular mechanism used to regulate cell number and eliminate damaged or mutated cells. Concomitant with the initiation of the apoptotic cell signal, chemotherapeutic agents also induce anti-apoptotic factors, such as NF-kappaB, which compromise the overall efficacy of chemotherapeutic anticancer treatment. Here we describe an adjuvant therapy in which a small molecule is used to sensitize cancer cells toward apoptosis induced by chemotherapeutics. Our results indicate that the imidazoline 1d modulates the pro-survival NF-kappaB pathway and selectively sensitizes cancer cells toward DNA damaging agents, thus enhancing the overall efficacy of the treatment. Pretreatment of cancer cells with the noncytotoxic imidazoline 1d (10 nM) resulted in a significant increase in apoptosis and anticancer efficacy of the clinically significant DNA damaging agents camptothecin and cisplatin. Noncancerous cells remained unaffected during this regimen.  相似文献   

9.
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells while sparing normal cells. However, many cancer cells are resistant to TRAIL-induced cell death. Here, we report that paxilline, an indole alkaloid from Penicillium paxilli, can sensitize various glioma cells to TRAIL-mediated apoptosis. While treatment with TRAIL alone caused partial processing of caspase-3 to its p20 intermediate in TRAIL-resistant glioma cell lines, co-treatment with TRAIL and subtoxic doses of paxilline caused complete processing of caspase-3 into its active subunits. Paxilline treatment markedly upregulated DR5, a receptor of TRAIL, through a CHOP/GADD153-mediated process. In addition, paxilline treatment markedly downregulated the protein levels of the short form of the cellular FLICE-inhibitory protein (c-FLIPs) and the caspase inhibitor, survivin, through proteasome-mediated degradation. Taken together, these results show that paxilline effectively sensitizes glioma cells to TRAIL-mediated apoptosis by modulating multiple components of the death receptor-mediated apoptotic pathway. Interestingly, paxilline/TRAIL co-treatment did not induce apoptosis in normal astrocytes, nor did it affect the protein levels of CHOP, DR5 or survivin in these cells. Thus, combined treatment regimens involving paxilline and TRAIL may offer an attractive strategy for safely treating resistant gliomas.  相似文献   

10.
Cardiolipin (CL) plays an essential role as a marker for cell apoptosis. Quantitative detection of phospholipids (PLs) by UV absorbance is problematic due to the presence of few double bonds in the structure. Although 10-N-nonyl acridine orange (NAO) has been utilized for fluorescent visualization of liposomes and mitochondria through its interaction with CL, in this work, we have developed a specific fluorescent method for CL in solution using NAO. The interaction of sodium n-dodecyl sulfate (SDS), used to treat cells prior to lipid extraction, and other PLs found in cell membranes such as phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidiylserine (PS), and sphingomyelin (SM) with NAO is investigated. The fluorescence intensity of the 0.5 μM NAO signal is strongly quenched by SDS below 25% methanol in water but with a methanol content above 50%, no quenching of NAO by SDS is observed. No fluorescence quenching of NAO with a 50% methanol/50% water solvent by the previously mentioned PLs or 4–20 μM cholesterol with the exception of PG at above 8 μM is noted. Using this 50% methanol/50% water solvent, the fluorescence signal due to the NAO–CL interaction is quite stable from 3 to at least 15 min. With excitation and emission wavelengths set at 518 and 530 nm, respectively, 20 μM NAO provides an inverse linear fluorescence response at 0.2–10 μM CL with a correlation coefficient of 0.9929. The detection limit is 0.2 μM and the limit of quantification is 0.6 μM. Structurally analogous acridine orange and phenosafranin dyes are less effective as fluorescent probes for CL. The CL in the whole cell and membrane samples is quantitatively determined by standard addition to range from 0.2 to 1.5 μM. The level of CL in cell membrane samples, previously subjected to staurosporine which initiates cell apoptosis, is increased but not significantly through use of the t-test.  相似文献   

11.
The anti‐cancer mechanisms of curcumin have been reported to include suppressions of angiogenesis and tumor proliferation. The main goal of this research is to increase the solubility of curcumin by cold atmospheric plasma (CAP) and assess the effects of modified curcumin by charging with tri‐polyphosphate chitosan nanoparticles for MCF‐7, MDA‐MB‐231 breast cancer cells, and human fibroblast cells. Curcumin modification was done by CAP and its solubility was evaluated by spectrophotometry. After loading modified curcumin into nano‐chitosan‐TPP, nanocurcumin was characterized by scanning electron microscopy. Cellular viability and apoptosis of treated cells were assessed by MTT and Annexin V. The changes of messenger RNA expression of TP5353 and VEGF genes were analyzed by real‐time PCR. CAP was able to transform the curcumin to possess hydrophilic characteristics after 90 seconds. The mean diameter of Curcumin loaded chitosannanoparticles (NPs) were determined as 48 nm. MTT results showed that the IC50 of nano Cur‐chitosan‐TPP was effectively decreased compared to free curcumin in MCF‐7 (15 μg/mL at 72 hours vs 20 μg/mL at 48 hours). Additionally, nano Cur‐chitosan‐TPP had no significant effect on normal cells (Human dermal fibroblas: HDF), whereas it also decreased the viability of triple negative breast cancer cell line (MDA‐MB‐231). Real‐time PCR results showed that expression level of TP53 gene was upregulated (P = .000), whereas VEGF gene downregulated (P = .000) in treated MCF‐7 cells. Curcumin loaded chitosan nanoparticles have led to an induction of apoptosis (79.93%) and cell cycle arrest (at S and G2M). Modified‐curcumin‐tri‐polyphosphate chitosan nanoparticles using CAP can be considered as a proper candidate for breast cancer treatment.  相似文献   

12.
Melatonin (N-acetyl-5-methoxytryptamine) is a potent endogenous antioxidant and free radical scavenger that has attracted much attention as a consequence of its multiple biological functions. In addition to other physiological properties, it has clear antiproliferative activity in several types of cancer cell. The concentration of melatonin necessary to inhibit cell growth is much higher than its blood physiological concentrations in some tumor types. For years its indolic nature has impeded proper monitoring, by molecular or immunological techniques, of its uptake by cancer cells. In this work we developed a simple, rapid, and validated analytical method for detection and quantification of MEL inside normal and cancer cells. For this purpose we performed high-performance liquid chromatographic analysis after liquid–liquid extraction of the indole from biological samples. The method was validated, and the correlation coefficient for amounts from 0.125 to 1.25 μg was higher than 0.999, with a range of recovery near 100%. Precision was evaluated as repeatibility, and for intermediate precision, the relative standard deviation was less than 5%. The method was used to study the stability of the indole in solution and to determine intracellular melatonin concentrations in normal (PNT1A) and several cancer (LNCaP, DU-145, PC-3) prostate cell lines. Intracellular LOQ/LOD were 7.23/2.83, 23.17/9.07, 4.03/1.83, and 6.51/2.53 nmol L−1, or 1.82/4.66, 0.56/1.45, 3.26/8.34, and 2.02/5.17 attogram in each cell in PNT1A, LNCaP, DU145, and PC-3 cells, respectively. Because there was no information about intracellular levels of melatonin inside normal or tumor prostate cells after treatment with the indole, nor a relationship between its antiproliferative activity and its intracellular concentration, this is the first time that, by using an analytical method combined with measurement of cellular volume by flow cytometry, the intracellular concentration of MEL has been estimated. Also, data obtained here explain why the antiproliferative properties of MEL vary in different cell types. This is, moreover, the first time that by increasing the intracellular concentration of melatonin, its antitumor properties have been promoted in prostate cancer cells. This process can be monitored by the method developed here.  相似文献   

13.
The oxidative degradation of nitrobenzene (NB) induced by gaseous glow discharge plasma in contact with aqueous solution was investigated. The experimental results indicated that NB removal obeyed first-order kinetics under certain applied currents. The major degradation byproducts such as nitrophenols, phenol, 1,3-dinitrobenzene and carboxylic acids have been detected. The distribution of nitrophenols follows the order o- > p- > m- and oxalic, formic and acetic acids are major carboxylic intermediates. The eventual products were nitrate ion and carbon dioxide. During the treatment, a large amount of hydrogen peroxide was produced. Addition of ferrous or ferric ions into the solution greatly enhanced the degradation rate due to Fenton’s reaction. The energy efficiencies of NB removal and hydrogen peroxide formation were compared with those of other discharges. Hydroxyl radicals were shown to be the most likely species responsible for NB degradation  相似文献   

14.
Plasma medicine is a new field focusing on biomedical and clinical applications of cold gas plasmas, including their anticancer effects. Cold plasmas can be applied directly or indirectly as plasma-activated liquids (PAL). The effects of plasma-activated cell growth medium (PAM) and plasma-activated phosphate buffered saline (PAPBS) were tested, using a plasma pen generating streamer corona discharge in ambient air, on different cancer cell lines (melanoma A375, glioblastoma LN229 and pancreatic cancer MiaPaCa-2) and normal cells (human dermal fibroblasts HDFa). The viability reduction and apoptosis induction were detected in all cancer cells after incubation in PAL. In melanoma cells we focused on detailed insights to the apoptotic pathways. The anticancer effects depend on the plasma treatment time or PAL concentration. The first 30 min of incubation in PAL were enough to start processes leading to cell death. In fibroblasts, no apoptosis induction was observed, and only PAPBS, activated for a longer time, slightly decreased their viability. Effects of PAM and PAPBS on cancer cells showed selectivity compared to normal fibroblasts, depending on correctly chosen activation time and PAL concentration, which is very promising for potential clinical applications. This selectivity effect of PAL is conceivably induced by plasma-generated hydrogen peroxide.  相似文献   

15.
The recent discovery of the salutary effects of carbon monoxide (CO) in chronic obstructive pulmonary disease (COPD), ischemic perfusion damage, graft implantation, as well as its pro-apoptotic effects on hyper-proliferating cells has raised interest in delivering small doses of CO to biological targets under controlled conditions. In such attempts, photoactive metal carbonyl complexes (photoCORMs) have shown promise and several accounts of cancer cell eradication with light-triggered CO release from photoCORMs have been reported. CO releasing molecules (CORMs) and photoCORMs have been incorporated within biocompatible drug delivery vehicles such as carboxymethyl chitosan or mesoporous silica-based nanoparticles and the composite materials (photoCORs) have been successfully employed in controlled CO delivery to cancer cells to cause rapid CO-induced apoptosis. Fiber optic technology has also been utilized for remote delivery of CO to not easily accessible targets. Reports on all these therapeutic modalities for on-demand CO delivery to malignant targets in a highly localized fashion have opened up the possibility of phototherapy of cancer with the use of an unusual so-called “toxic” molecule. This review highlights the methodologies used in CO photochemotherapy reported so far along with analysis of their therapeutic outcomes, and possible improvements for better applicability.  相似文献   

16.
Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea‐grafted polyethylenimine (πPEI) with affinity‐purified His‐tagged proteins pre‐organized onto a nickel‐immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His‐tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His‐tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single‐chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions.  相似文献   

17.
Early detection of apoptotic cells via caspase activity is demonstrated with fast response time. Fluorescence correlation spectroscopy (FCS) is used to identify the presence of a cleaved fluorogenic probe based on the fluorescence of rhodamine 110 in Jurkat cells. FCS curves are shown to be markedly different for autofluorescent (non-apoptotic) cells, whereas cells with cleaved probe showed diffusion and molecular brightness characteristic of rhodamine 110. Using FCS measurements, cells were identified as apoptotic on the basis of the presence of autocorrelated fluorescence, average molecular brightness (η), and molecular dwell time (τ D). Apoptotic cells identified in this manner were detected as early as 45 min after induction. Unlike other methods with similar identification times, such as western blotting and electron microscopy, cells remain viable for further analysis. This multi-parameter approach is rapid, flexible, and does not require transfection of the cells prior to analysis, enabling apoptosis to be identified early in a wide variety of cell types.   相似文献   

18.
Potent photosensitizers hypocrellin A (HA), hypocrellin B (HB) and hypericin (HY) are lipid-soluble perylquinone derivatives of the genus Hypericum and have a strong photodynamic effect on tumors and viruses. However, the mechanisms of tumor cell death induced by HA, HB and HY are still unclear. Moreover, no reports have mentioned cell apoptosis induced by HA, HB and HY in human nasopharyngeal carcinoma (NPC) and other mucosal cells. In this study, we attempt to clarify the photodynamic effects of HA, HB and HY compounds in poorly differentiated (CNE2) and moderately differentiated (TW0-1) human NPC cells as well as human mucosal colon and bladder cells. Using these cell lines we investigated few hallmarks of apoptotic commitments in a drug dose dependent manner. Tumor cells photo-activated with HA, HB and HY showed cell size shrinkage and an increase in the sub-diploid DNA content. A loss of membrane phospholipid asymmetry associated with apoptosis was induced by all tumor cell lines as evidenced by the externalization of phosphatidylserine. Under apoptotic conditions, Western blot analysis of poly(ADP-ribose) polymerase, a caspases substrate, showed the classical cleavage pattern (116 to 85 kDa) associated with apoptosis in HA, HB and HY-treated cell lysates. In addition, 85 kDa cleaved product was blocked by the tetrapepdide caspase inhibitors such as DEVD-CHO or z-VAD-fmk. Both inhibitors protect tumor cells from apoptosis. These results demonstrate that tumor cell death induced by HA, HB and HY is mediated by caspase proteases. This study also identifies HB as a more potent and promising photosensitizer for the treatment of mucosal cancer cells.  相似文献   

19.
Many cancer cells critically rely on antioxidant systems for cell survival and are vulnerable to further oxidative impairment triggered by agents generating reactive oxygen species (ROS). Therefore, the classical design and development of inhibitors that target antioxidant defense enzymes such as thioredoxin reductase (TrxR) can be a promising anticancer strategy. Herein, it is shown that a gold(I) complex containing an oleanolic acid derivative ( 4 b ) induces apoptosis of ovarian cancer A2780 cells by activating endoplasmic reticulum stress (ERS). It can inhibit TrxR enzyme activity to elevate ROS, mediate ERS and mitochondrial dysfunction, and finally leads to cell cycle arrest and apoptosis of A2780 cells. Notably, this complex inhibits A2780 xenograft tumor growth accompanied by increased ERS level and decreased TrxR activity in tumor tissues.  相似文献   

20.
Apoptotic cell death is a fundamental process in the development and physiological homeostasis of multicellular organisms. It is associated with control of cell numbers in tissues and organs during development, with cell turnover, and with response to infection. Molecules that trigger this process in continuously proliferating cancer cells can be used as chemotherapeutic agents. Ribosome inactivating proteins (RIPs) that inhibit translation in a cell by depurinating (N-glycosidase activity) the 28S rRNA are known to serve as apoptosis inducers. However, the role of depurination activity of the RIPs in apoptosis induction is still controversial. Presently, there are three different hypotheses which propose that depurination is: (1) essential, (2) essential but not the sole factor, or (3) not essential for apoptosis induction. This article reviews various experimental outcomes on the importance of N-glycosidase activity of RIPs in the induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号