首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We obtain estimates on the continuous dependence on the coefficient for second-order non-linear degenerate Neumann type boundary value problems. Our results extend previous work of Cockburn et al., Jakobsen and Karlsen, and Gripenberg to problems with more general boundary conditions and domains. A new feature here is that we account for the dependence on the boundary conditions. As one application of our continuous dependence results, we derive for the first time the rate of convergence for the vanishing viscosity method for such problems. We also derive new explicit continuous dependence on the coefficients results for problems involving Bellman-Isaacs equations and certain quasilinear equation.  相似文献   

2.
We consider phase-field systems of Caginalp type on a three-dimensional bounded domain. The order parameter fulfills a dynamic boundary condition, while the (relative) temperature is subject to a homogeneous boundary condition of Dirichlet, Neumann or Robin type. Moreover, the two equations are nonlinearly coupled through a quadratic growth function. Here we extend several results which have been proven by some of the authors for the linear coupling. More precisely, we demonstrate the existence and uniqueness of global solutions. Then we analyze the associated dynamical system and we establish the existence of global as well as exponential attractors. We also discuss the convergence of given solutions to a single equilibrium.  相似文献   

3.
4.
We analyze the dynamics of a reaction-diffusion equation with homogeneous Neumann boundary conditions in a dumbbell domain. We provide an appropriate functional setting to treat this problem and, as a first step, we show in this paper the continuity of the set of equilibria and of its linear unstable manifolds.  相似文献   

5.
Our aim in this article is to give a construction of exponential attractors that are continuous under perturbations of the underlying semigroup. We note that the continuity is obtained without time shifts as it was the case in previous studies. Moreover, we obtain an explicit estimate for the symmetric distance between the perturbed and unperturbed exponential attractors in terms of the perturbation parameter. As an application, we prove the continuity of exponential attractors for a viscous Cahn‐Hilliard system to an exponential attractor for the limit Cahn‐Hilliard system. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We obtain explicit formulas for the scattering of plane waves with arbitrary profile by a wedge under Dirichlet, Neumann and Dirichlet‐Neumann boundary conditions. The diffracted wave is given by a convolution of the profile function with a suitable kernel corresponding to the boundary conditions. We prove the existence and uniqueness of solutions in appropriate classes of distributions and establish the Sommerfeld type representation for the diffracted wave. As an application, we establish (i) stability of long‐time asymptotic local perturbations of the profile functions and (ii) the limiting amplitude principle in the case of a harmonic incident wave. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We consider semilinear elliptic Dirichlet problems in bounded domains, overdetermined with a Neumann condition on a proper part of the boundary. Under different kinds of assumptions, we show that these problems admit a solution only if the domain is a ball. When these assumptions are not fulfilled, we discuss possible counterexamples to symmetry. We also consider Neumann problems overdetermined with a Dirichlet condition on a proper part of the boundary, and the case of partially overdetermined problems on exterior domains.  相似文献   

8.
We combine the calculus of conormal distributions, in particular the Pull‐Back and Push‐Forward Theorems, with the method of layer potentials to solve the Dirichlet and Neumann problems on half‐spaces. We obtain full asymptotic expansions for the solutions, show that boundary layer potential operators are elements of the full b‐calculus and give a new proof of the classical jump relations. En route, we improve Siegel and Talvila's growth estimates for the modified layer potentials in the case of polyhomogeneous boundary data. The techniques we use here can be generalised to geometrically more complex settings, as for instance the exterior domain of touching domains or domains with fibred cusps. This work is intended to be a first step in a longer program aiming at understanding the method of layer potentials in the setting of certain non‐Lipschitz singularities that can be resolved in the sense of Melrose using manifolds with corners and at applying a matching asymptotics ansatz to singular perturbations of related problems.  相似文献   

9.
In this paper, we study the convergence rates of solutions for second order elliptic equations with rapidly oscillating periodic coefficients in two-dimensional domain. We use an extension of the "mixed formulation" approach to obtain the representation formula satisfied by the oscillatory solution and homogenized solution by means of the particularity of solutions for equations in two-dimensional case. Then we utilize this formula in combination with the asymptotic estimates of Green or Neumann functions for operators and uniform regularity estimates of solutions to obtain convergence rates in L~p for solutions as well as gradient error estimates for Dirichlet or Neumann problems respectively.  相似文献   

10.
We study estimates for square roots of second order elliptic non necessarily selfadjoint operators in divergence form on Lipschitz domains subject to Dirichlet or to Neumann boundary conditions, pursuing our work [4] where we considered operators on . We obtain among other things for all if L is real symmetric and the domain bounded, which is new for . We also obtain similar results for perturbations of constant coefficients operators. Our methods rely on a singular integral representation, Calderón-Zygmund theory and quadratic estimates. A feature of this study is the use of a commutator between the resolvent of the Laplacian (Dirichlet and Neumann) and partial derivatives which carries the geometry of the boundary. Received: 12 January 2000 / Published online: 4 May 2001  相似文献   

11.
In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations.  相似文献   

12.
We consider the Dirichlet problem for linear nonautonomous second order parabolic equations with bounded measurable coefficients on bounded Lipschitz domains. Using a new Harnack-type inequality for quotients of positive solutions, we show that each positive solution exponentially dominates any solution which changes sign for all times. We then examine continuity and robustness properties of a principal Floquet bundle and the associated exponential separation under perturbations of the coefficients and the spatial domain.  相似文献   

13.
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term χtt, χ being the order parameter, which is linearly coupled with an evolution equation for the (relative) temperature ?. The latter can be of hyperbolic type if the Cattaneo-Maxwell heat conduction law is assumed. The state variables and the chemical potential are subject to the homogeneous Neumann boundary conditions. We first provide conditions which ensure the well-posedness of the initial and boundary value problem. Then, we prove that the corresponding dynamical system is dissipative and possesses a global attractor. Moreover, assuming that the nonlinear potential is real analytic, we establish that each trajectory converges to a single steady state by using a suitable version of the ?ojasiewicz-Simon inequality. We also obtain an estimate of the decay rate to equilibrium.  相似文献   

14.
We consider non-linear parabolic equations with subdifferential principal part and give conditions under which they posses global attractors in spite of considering non-Lipschitz perturbations. The case of globally Lipschitz perturbations of a maximal monotone operator has been addressed in Boll. Un. Mat. Ital. B (8) 2 (2000) 693–706. In the case of perturbations which are not globally Lipschitz, the main difficulty is the lack of uniqueness of solutions which at first does not even allow us to define attractors. We overcome this difficulty for problems enjoying certain regularity and absorption properties that allow uniqueness of solutions after some time has been elapsed. The results developed here are applied to the case when the subdifferential operator is the p-Laplacian to obtain existence of attractors and the existence of periodic solutions.  相似文献   

15.
We analyze boundary value problems prescribing Dirichlet or Neumann boundary conditions for a nonlocal nonlinear diffusion operator which is analogous to the porous medium equation in a bounded smooth domain ΩRN with N≥1. First, we prove existence and uniqueness of solutions and the validity of a comparison principle for these problems. Next, we impose boundary data that blow up in finite time and study the behavior of the solutions.  相似文献   

16.
17.
In this paper we study a simple non-local semilinear parabolic equation in a bounded domain with Neumann boundary conditions. We obtain a global existence result for initial data whose LL-norm is less than a constant depending explicitly on the geometry of the domain. A natural energy is associated to the equation and we establish a relationship between the finite-time blow up of solutions and the negativity of their energy. The proof of this result is based on a Gamma-convergence technique.  相似文献   

18.
We consider the singular perturbations of two boundary value problems, concerning respectively the viscous and the nonviscous Cahn-Hilliard equations in one dimension of space. We show that the dynamical systems generated by these two problems admit global attractors in the phase space , and that these global attractors are at least upper-semicontinuous with respect to the vanishing of the perturbation parameter.  相似文献   

19.
We investigate the large-time behavior of three types of initial-boundary value problems for Hamilton–Jacobi Equations with nonconvex Hamiltonians. We consider the Neumann or oblique boundary condition, the state constraint boundary condition and Dirichlet boundary condition. We establish general convergence results for viscosity solutions to asymptotic solutions as time goes to infinity via an approach based on PDE techniques. These results are obtained not only under general conditions on the Hamiltonians but also under weak conditions on the domain and the oblique direction of reflection in the Neumann case.  相似文献   

20.
Inspired by the penalization of the domain approach of Lions and Sznitman, we give a sense to Neumann and oblique derivatives boundary value problems for nonlocal, possibly degenerate elliptic equations. Two different cases are considered: (i) homogeneous Neumann boundary conditions in convex, possibly non-smooth and unbounded domains, and (ii) general oblique derivatives boundary conditions in smooth, bounded, and possibly non-convex domains. In each case we give appropriate definitions of viscosity solutions and prove uniqueness of solutions of the corresponding boundary value problems. We prove that these boundary value problems arise in the penalization of the domain limit from whole space problems and obtain as a corollary the existence of solutions of these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号