首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
High Temperature Phosphidation of Iron-Nickel Alloys by Phosphorus Vapor A study was undertaken concerning the products and kinetics in the phosphidation of iron-nickel alloys with various ratios of metallic constituents at 700° in phosphorus vapor at 1 atm by a sealed-tube method. X-ray diffraction patterns and an electron microprobe analysis of the products showed that the phosphide-layer structure reaches the expression of NiP2 ~ Ni6P5/Ni2P, Fe2P/(Fe? Ni alloy). The phosphidations proceeded according to a parabolic rate law for all the compositions of the alloy. A marker experiment indicated that the diffusing species was not phosphorus but metals. The rate constant decreased with an increase in the content of iron in the alloy.  相似文献   

2.
Highly active and low-cost catalytic electrodes for urea oxidation reaction(UOR) are always crucial for exploration of urea fuel cells.Herein,novel york-shell-structural Ni_2P/C na nosphere hybrids(Ni_2P/C-YS)are rationally constructed via a hydrothermal method and subsequent phosphidation treatment under different temperature ranging from 250℃ to 450℃ for UOR applications.In the in-situ constructed hollow york-shell structure,the coupling of conductive carbon materials and active Ni_2P allows numerous interfaces facilitating the electron transfer and thereby accelerating the catalytic kinetics.The results demonstrate that Ni_2P/C-YS-350 nanocomposite can boost the UOR process with a low potential of 1.366 V vs.RHE at a current density of 50 mA/cm~2 in alkaline electrolyte and afford the superior durability with negligible potential decay after 23 h.This study presents that the carbon coated Ni_2P hybrid with the optimized crystallinities and hollow york-shell configurations can be a promising candidate for application in urea fuel cells.  相似文献   

3.
The effect of the reduction conditions on the physicochemical and catalytic properties of Ni2P/SiO2 catalysts was studied. The catalysts were prepared by impregnating silica with a solution of nickel acetate and diammonium hydrogen phosphate followed by drying, calcination, and temperature-programmed reduction. The Ni2P/SiO2 catalysts were reduced prior to hydrodeoxygenation (HDO) of methyl palmitate in the catalytic reactor (in situ) at temperatures of 550, 600, and 650 °С for 3 h and at 600 °С for 1 and 6 h. The reduction temperature and reduction time were shown to affect the conversion of methyl palmitate, and the optimal reduction conditions of the Ni2P/SiO2 catalysts were found. The Ni2P/SiO2 catalyst synthesized according to a widely used preparation method, including steps of passivation and rereduction at 450 °С in addition to the reduction step, is inferior in activity to the samples prepared in situ.  相似文献   

4.
Process in which sulfur is produced from a gas containing 25–55% SO2 was studied in order to evaluate the real efficiency of the catalytic post-reduction of sulfur dioxide in a pilot unit with gas flow rate of up to 1.2 nm3 h–1 at the following temperatures (°C): thermal stage 850–1100, catalytic conversion 350–570, and Claus reactor 219–279. It was found that the conversion at 400–550°C and space velocity of 1600 h–1 on AOK-78-57 promoted aluminum oxide catalyst provides full processing of organosulfur compounds (CS2 and COS). The temperature dependence of the conversion/generation of hydrogen sulfide on AOK-78-57 catalyst corresponds to the equilibrium model. It was experimentally confirmed that the homogeneous reduction of sulfur dioxide gas with methane at T ≈ 1100°C, with catalytic post-reduction at 400–550°C and subsequent Claus-conversion of the reduced gas at 230–260°C, provide a sufficiently deep (by 92–95%) general processing of sulfur dioxide gas to sulfur.  相似文献   

5.
The subsolidus region of the Li2O-MgO-B2O3 system has been studied by X-ray powder diffraction and differential thermal analysis. Isothermal sections at 500–550 and 650–700°C have been designed. The following complex borates have been found to form: at 500–550°C, Li2MgB2O5 and LiMgBO3 are formed; at 650–700°C, a new phase Li4MgB2O5 is formed along with LiMgBO3; and at 5500–600°, Li2MgB2O5 is formed.  相似文献   

6.
An interest in NiMoО4–SiO2 reduction stems from its promising use as catalysts for hydrodeoxygenation and hydrodesulfurization processes. The work exploits in situ X-ray diffraction to investigate phase transformations during NiMoO4–SiO2 reduction with hydrogen in a temperature range of 30-700°C. The α-NiMoО4 reduction is shown to proceed in two stages. In the first stage, at 400-500°C, an intermediate state (Ni,Mo,□)O mixed oxide and Ni1–x Mo x form. In the second stage, above 650°C, two solid solutions based on the Mo and Ni structures form. The structure of the intermediate state is refined by the Rietveld method. It is demonstrated that the Ni–Mo mixed oxide forms based on the NiO structure, which contains a certain number of cation vacancies.  相似文献   

7.
Morphology and crystallographic characteristics of (001) KTiOPO4 air-annealed surface were investigated. The autoepitaxy of nanosized KTiOPO4 islands was revealed in samples annealed at 550°C for 2–20 h. When annealing at 650°C takes ~20 h, the TiO2 particles are observed to form on the substrate surface. This indicates the onset of the thermal decomposition of KTP at this temperature.  相似文献   

8.
Summary Adsorption properties of NH4-clinoptilolite, thermally treated at 400, 550 and 650°C, were investigated by gas-solid chromatography. Adsorption of ten hydrocarbons, including aliphatic, alicyclic, chlorinated and aromatic compounds is discussed in the light of adsorbate-adsorbent interactions. The imporatant thermodynamic parameters of adsorption are determined. A detailed discussion is presented on the alteration of the surface properties of NH4-clinoptilolite caused by thermal treatment. Experimental data obtained show that NH4-clinoptilolite treated at 650°C can be successfully employed as a column packing in analytical gassolid chromatography.  相似文献   

9.
Rates and Products in High-Temperature Corrosion of Chromium-Iron Alloys by Phosphorus Vapor A study was undertaken concerning the kinetics and products in the phosphidation of chromium-iron alloys with various compositions at 900 and 1 000°C in phosphorus vapor at 1 atm by a sealed-tube method. X-ray diffraction patterns and an electron microprobe analysis of the products showed that at the outer layers iron phosphides alone were formed for iron-base alloys and both chromium and iron phosphides formed for chromium-base alloys, and that at the phosphide/alloy interface lower phosphides Cr2P and Fe2P were formed, corresponding to the compositions of the alloy. The phosphidations proceeded according to a parabolic rate law for all the compositions of the alloy and rate limited by a diffusion of cation in the phosphide lattice. The rate constant decreased generally with an increase in the content of chromium in the alloy.  相似文献   

10.
Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, and 75 °C) to determine the effect of synthesis temperature on the thermal stability of the Bayer hydrotalcite structures and the mineralogical phases that form. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; (1) Bayer hydrotalcite, (2), calcium carbonate species, and (3) hydromagnesite. The DTG curve can be separated into four decomposition steps; (1) the removal of adsorbed water and free interlayer water in hydrotalcite (30–230 °C), (2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250–400 °C), (3) the decarbonation of hydromagnesite (400–550 °C), and (4) the decarbonation of aragonite (550–650 °C).  相似文献   

11.
The crystallization process of some glasses in the ternary Na2O–SiO2–PbO system with good chemical stability that can be used for waste inertization was studied using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), differential thermal analysis (DTA) and scanning electron microscopy. The parent glasses were characterized by XRD and FT-IR, and their vitreous state was determined. DTA measurements evidenced glass transition (T g) and crystallization temperatures (T c). The thermal treatments were conducted at vitreous transition temperature (400 °C) and at highest effect of crystallization (650 °C). XRD evidenced the lead and sodium silicate crystalline phases in samples treated at 650 °C for 12 h. Micrometer crystallites dispersed in the glass matrices have affected the transparence of glasses and made them opaque after treatment at 650 °C. The influence of oxide quantities in compositions on the crystallization tendency was revealed. A PbO higher content than that of SiO2 as well as lower Na2O content decreased the tendency of crystallization.  相似文献   

12.
Nanocrystalline titanium dioxide (TiO2) powders have been synthesized by sol–gel method using titanium tetrachloride (TiCl4) or tetrabutyl titanate (Ti(OC4H9)4 as precursors, different alcohols and calcination temperatures in the range from 400 to 650 °C. The photocatalytic activity of as-prepared powders has been tested for the degradation of metoprolol tartrate salt, a selective β-blocker used to treat a variety of cardiovascular diseases, and compared to photocatalytic activity obtained from Degussa P25. Nanosized TiO2 powders prepared from TiCl4 and amyl-alcohol, calcined at 550 °C, displayed an activity comparable to Degussa P25, whereas the sample from the same series, calcined at 650 °C, showed higher photocatalytic activity in the whole range of the catalyst loading. Structural, morphological and surface properties of synthesized TiO2 nanopowders have been investigated by XRD, SEM, EDS and BET measurements, as well as FTIR and Raman spectroscopy, in order to find out the material properties which enable rapid an efficient decomposition of metoprolol under UV radiation.  相似文献   

13.
Preparation of Ni2P by temperature‐programmed reduction (TPR) of a phosphate precursor is challenging because the P?O bond is strong. An alternative approach to synthesizing Ni2P, by reduction of nickel hexathiodiphosphate (Ni2P2S6), is presented. Conversion of Ni2P2S6 into Ni2P occurs at 200–220 °C, a temperature much lower than that required by the conventional TPR method (typically 500 °C). A sulfur‐containing layer with a thickness of about 4.7 nm, composed of tiny crystallites, was observed at the surface of the obtained Ni2P catalyst (Ni2P?S). This is a direct observation of the sulfur‐containing layer of Ni2P, or the so‐called nickel phosphosulfide phase. Both the hydrodesulfurization activity and the selective hydrogenation performance of Ni2P‐S were superior to that of the catalyst prepared by the TPR method, suggesting a positive role of sulfur on the surface of Ni2P‐S. These features render Ni2P‐S a legitimate alternative non‐precious metal catalyst for hydrogenation reactions.  相似文献   

14.
The mesoporous α-Fe2O3 nanowires (NWs) were successfully synthesized by changing the calcination temperature from 550 to 750 °C (marked NWs-550, NWs-650 and NWs-750) via using SBA-15 silica as the hard templates with the nanocasting method. The characterization results indicated that the bandgap of the as-prepared samples hardly changed and the high BET surface areas changed a little with the calcination temperature from 550 to 750 °C. Mesoporous α-Fe2O3 NWs had been found to possess the remarkable gas-sensing performance to ethanol gas. The gas-sensing behavior indicated that α-Fe2O3 NWs-650 exhibited the higher response than that of α-Fe2O3 NWs-550 and α-Fe2O3 NWs-750. The calcination-temperature-dependent gas-sensing properties were mainly attributed to the competition of surface defects and body defects by the crystallization temperature. The lower calcination temperature could create more surface defects to improve the gas-sensing response, while the higher temperature would reduce the body defect and make the charge carriers transport easily. As the result, the suitable calcination temperature was desired to optimize the defects of nanostructures to improve the gas sensitivity.  相似文献   

15.
Ferrites Ni0.75Zn0.25Fe2O4 were obtained by polymeric precursor method and calcined in a short time with microwave energy to assess the morphological and microstructural characteristics. Samples were calcined at 500, 650, 800, and 950 °C for 30 min in a microwave oven. The resulting powders were characterized by thermal analysis (TG/DSC), X-ray diffraction (XRD), Fourier transform infrared spectrometer, field-emission gun scanning electron microscope (FEG-SEM), and energy-dispersive X-ray spectroscopy. The XRD results showed the formation of single ferrite phase at temperature of 500 °C for 30 min. The FEG-SEM analysis showed agglomerated particles with formation of non-dense longitudinal plates, with interparticle porosity and agglomerated fine particles. The rapid calcination by microwave energy demonstrated satisfactory results in relatively low temperature of 500 °C for 30 min and appeared to be a promising technique for obtaining nickel–zinc ferrite powders.  相似文献   

16.
Nickel zinc ferrite (Ni0.4Zn0.6Fe2O4) films on Si (100) substrate were synthesized using a spin-coating method. The crystallinity of the Ni0.4Zn0.6Fe2O4 films with the thickness of about 386 nm became better as the annealing temperature increased. The films have smooth surface, relatively good packing density and uniform thickness. The volatilization of Zn is serious at 900 °C. With the increase of annealing temperature, the saturation magnetization M s increases in the temperature ranging from 400 to 700 °C, however, decreases above 700 °C, and the coercivity H c increases in the temperature range 400–800 °C, decreases above 800 °C. After annealed at 700 °C for 2 h in air with the heating rate 2 °C/min, the film shows a maximum saturation magnetization M s of 349 emu/cc and low coercivity H c of 66 Oe. The M s is higher than others which prepared by this method, however, the H c is lower. The M s of Ni0.4Zn0.6Fe2O4 films annealed at 700 °C increases with increasing annealing time and the H c changes slightly.  相似文献   

17.
We propose a process for the synthesis of ZnO/NiO nanocomposites from ethanolic solutions by means of consecutive generation of ZnO and NiO nanoparticles. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) show that in the range 400–900°C, nanocomposites are two-phase mixtures of particles of hexagonal and cubic phases with ZnO dissolved in NiO; at 1000°C, Ni0.5Zn0.5O single-phase solid solution is generated. The mean particle size determined from TEM data and diffraction peak broadening increases with rising temperature. In the cathodoluminescence spectrum of a sample annealed at 400°C, the luminescence peak shifts to the UV. Specific magnetization versus magnetic field measurements in nanocomposites show hysteresis; the coercive force reaches 200 Oe.  相似文献   

18.
To improve the initial corrosion resistance and then make the degradation rate of magnesium alloys to meet the biomedical application, crack-free CaO–P2O5–SrO–Na2O bioglass-ceramic coatings were synthesized on AZ31 magnesium alloy substrates using a sol–gel dip-coating technique followed by a heat-treatment in the temperature range of 400–500 °C. The effects of heat-treatment on the phase constituents, surface characteristics and corrosion resistances of the coatings were investigated. It was shown that the crystallization of Ca2P2O7 occurred after the glass was treated at 400 °C. As the temperature increased from 400 °C to 450 °C, besides main phase Ca2P2O7, β-Ca(PO3)2 and Ca4P6O19 were identified as minor crystal phases in the glass–ceramic. No new phase was detected with the temperature increasing to 500 °C except for the further crystallization. Meanwhile, the water contact angles of the coatings decreased with the increase of heat-treatment temperature due to the great crystallization. The corrosion resistances of the coated magnesium alloys were studied by electrochemical corrosion techniques in the simulated body fluid. The results revealed that the coating heat-treated at 400 °C exhibited superior corrosion resistance because of less crystallization, suggesting that the calcium phosphate bioglass–ceramic coating can provide effective protection for magnesium alloy substrate to control its initial degradation in vivo and maintain the desired mechanical properties.  相似文献   

19.
Ni–Co–P/nano‐sized Si3N4 composite coating was successfully fabricated on aluminum alloys by electroless plating in this work. The surface and cross‐sectional morphologies, composition, microstructure, microhardness, friction and wear behavior of deposits were investigated with SEM, EDS, XRD, Vickers hardness and high‐speed reciprocating friction, respectively. It was found that a Ni–Co–P/nano‐sized Si3N4 composite coating on aluminum alloy substrate is uniform and compact. The existence of nano‐sized Si3N4 particles in the Ni–Co–P alloy matrix causes a rougher surface with a granular appearance, and increases the microhardness but decreases the friction coefficients and wear rate of electroless coatings. Meanwhile, the effects of heat treatment at 200, 300, 400 and 500 °C for 1 h on the hardness and tribological properties were researched. It is revealed that both of the microhardness and tribological properties of Ni–Co–P coatings and Ni–Co–P/Si3N4 composite coatings increase with the increase of heating temperature in the range of 200–400 °C, but show different behavior for the two coatings after annealing at 500 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Polycrystalline Co0.75Ni0.75[Fe(CN)6]?·?XH2O was prepared by coprecipitation. The coprecipitated powder was annealed in vacuum at 80°C, 100°C, and 130°C. Variation of microstructural and magnetic properties with different annealed temperatures was studied by Fourier-transform infrared, X-ray diffraction, and magnetization measurements. The differences in magnetic phase transition temperature, coercivity, remanence, and effective magnetization were studied in detail. The magnetic contribution mainly results from FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII because FeII–CN–CoIII/NiII carries no net spin. After annealing at 130°C, the microstructures FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII convert to FeII–CN–CoIII/NiII. Differences in magnetic properties may be attributed to heat-induced microstructural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号