首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The stepwise synthesis of methyl α-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (EBC-OMe, 1), methyl α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (A(E)BC-OMe, 2), and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (DA(E)BC-OMe, 3) is described. Compounds 1, 2 and 3 constitute the methyl glycosides of fragments of the O-specific polysaccharide of Shigella flexneri serotype 5a. Methyl 2,4-di-O-benzoyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzoyl-α-L-rhamnopyranoside was an appropriate BC precursor for the synthesis of 1. For the synthesis of the branched targets 2 and 3, a benzyl group was best suited at position 2 of rhamnose C. Thus, methyl 4-O-benzyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside was the key intermediate to the BC portion. In all cases, 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride was a convenient E precursor, when used in combination with titanium tetrafluoride. All along, attention was paid to steric hindrance as a factor of major impact on the condensation steps outcome. Therefore, based on previous experience, 2-O-acetyl-3,4-di-O-allyl-α-L-rhamnopyranosyl trichloroacetimidate and 3,4,6-tri-O-acetyl-2-deoxy-2-trichloroacetamido-α-D-glucopyranosyl trichloroacetimidate were used as donors. Both suited all requirements when used as key precursors for residues A and D in the synthesis of 3, respectively.  相似文献   

2.
Abstract

Starting from L-fucose, D-glucose and lactose, methyl O-[2,3-di-O-benzoyl-4, 6-O-(4-methoxybenzylidene)-β-D-glucopyranosyl]-(1→4)-2,3-di-O-benzoyl-α-L-fucopyranoside and methyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-O-(methyl 2,3-di-O-benzoyl-β-D-glucopyranosyluronate)-(1→4)-2,3-di-O-benzoyl-α-L-fucopyranoside were synthesized. Removal of protecting groups gave the tetrasaccharide repeating unit of the antigen from Klebsiella type-16 in the form of its methyl ester methyl glycoside.  相似文献   

3.
Using methyl triflate as promoter, methyl O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-(1→4)-(methyl 2,3-di-O-benzoyl-β-D-glucopyranosyluronate) and methyl O-(2,3,4,6-tetra-O-benzyl-β-D-galacto-pyranosyl)-(1→-4)-O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-1(1→4)-(methyl 2,3-di-O-benzoyl-β-D-glucopyranosyluronate) have been synthesised. Removal of protecting groups gave the di- and trisaccharide in the form of their methyl ester methyl glycoside related to the antigen of Klebsiella type 16.  相似文献   

4.
ABSTRACT

A branched hexasaccharide fragment of type Ia group B streptococcal polysaccharide, α-NeuAc(2→3)-β-D-Gal(1→4)-β-D-GlcNAc(1→3)-[β-D-Glc(1→4)]-β-D-Gal(1→4)-β-D-Glc-OMe (13), has been synthesized by chemical-enzymatic procedures. Chemical synthesis of a pentasaccharide, β-D-Gal(1→4)-β-D-GlcNAc(1→3)-[β-D-Glc(1→4)]-β-D-Gal(1→4)-β-D-Glc-OMe (12), was achieved from glycosyl donor, 4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (9), and acceptor, methyl O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1→4)-O-(2,6-di-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (6), by block condensation in 41% yield. Following enzymatic sialylation of 12 at the 3-O-position of its terminal galactopyranosyl residue using recombinant α-(2→3)-sialyltransferase and CMP-NeuAc afforded 13 in 59% yield.  相似文献   

5.
ABSTRACT

The stereocontrolled synthesis of methyl α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside (EC, 1), methyl α-L-rhamnopyranosyl-(1→3)-[α-D-glucopyranosyl-(1→4)]-α-L-rhamnopyranoside (B(E)C, 3) and methyl α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyl-α-L-rhamnopyranoside (11) and 8 afforded the fully protected αE-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding βE-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding βE-disaccharide, namely, methyl β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside (βEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the αE and βE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required αE-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3-di-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.  相似文献   

6.
ABSTRACT

Each of four ganglioside GM4 and GM3 analogues containing 2- or 3-branched fatty alkyl residues in place of ceramide have been synthesized. Coupling of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (13) or O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-glacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-3-O-acetyl-2,4-di-O-benzoyl-α-D-glucopyranosyl trichloroacetimidate (14) with 2- or 3-branched fatty-alkyl-1-ols (9-12), prepared from the corresponding branched fatty acids by methyl esterification and reduction, using BF3Ot2 gave the corresponding ganglioside analogues (15, 17, 19, 21, 23, 25, 27, 29) in good yields, which were coverted, via O-deacylation and de-esterification, into the title compounds.  相似文献   

7.
The trisaccharide derivative methyl 2-O-[4,6-di-O-acetyl-3-O-(2,3,4,6-tetra-O-benzyl-α-D-gal-actopyranosyl)-2-deoxy-2-phthalimido-β-D-gluco-pyranosyl]-4,6-O-benzylidene-β-D-mannopyranoside (12) was obtained when 3-O-(2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl)-4,6-di-Oacetyl-2-deoxy-2-phtha-limido-β-D-glucopyranosyl trichloroacetimidate (8) was allowed to react with methyl 3-O-benzyl-4,6-O-benzylidene-β-D-mannopyranoside (11) in presence of trimethylsilyl triflate. Removal of protecting groups then gave the desired trisaccharide.  相似文献   

8.
ABSTRACT

Stereocontrolled, stepwise synthesis of methyl α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside (A(E)B, 1) and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside (DA(E)B, 2) is described; these constitute the methyl glycosides of fragments of the O-specific polysaccharide of Shigella flexneri serotype 5a. Two routes to trisaccharide 1 were considered. Route 1 involved the coupling of a precursor to residue A and a disaccharide EB, whereas route 2 was based on the condensation of a precursor to residue E and a disaccharide AB. Rather surprisingly, the latter afforded the β-anomer of 1, namely methyl α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside as the major product. Route 1 was preferred. Overall, several observations made during this study suggested that, for the construction of higher fragments, a suitable precursor to rhamnose A would require protecting groups of low bulkiness at position 3 and 4. Therefore, the 2-O-acetyl-3,4-di-O-allyl-α-L-rhamnopyranosyl trichloroacetimidate (35) was the precursor of choice to residue A in the synthesis of the tetrasaccharide 2. The condensation product of 35 and methyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-4-O-benzyl-α-L-rhamnopyranoside was selectively deacylated and condensed to 2-trichloroacetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl trichloroacetimidate to afford the corresponding fully protected tetrasaccharide 45. Controlled stepwise deprotection of the latter proceeded smoothly to afford the target 2. It should be emphasised that the preparation of 45 was not straightforward, several donors and coupling conditions that were tested resulted only in the complete recovery of the acceptor. Distortion of several signals in the 13C NMR spectra of the fully or partially protected tetrasaccharide intermediates suggested that steric hindrance, added to the known low reactivity of HO-2 of rhamnosyl acceptors, probably played a major role in the outcome of the glycosidation attempts.  相似文献   

9.
ABSTRACT

Ganglioside GM3 and KDN-ganglioside GM3, containing hexanoyl, decanoyl, and hexadecanoyl groups at the ceramide moiety have been synthesized. Selective reduction of the azido group in O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-(3-O-acetyl-2,6-di-O-benzoyl-β-D-glucopyranosyl)-(1→1)-(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (1) and O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-(3-O-acetyl-2,6-di-O-benzoyl-β-D-glucopyranosyl)-(1→1)-(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (2), coupling with hexanoic, decanoic, and hexadecanoic acids, O-deacylation, and de-esterification gave the title gangliosides GM3 (11→13) and KDN-GM3 (14→16) in good yields. On the other hand, O-deacylation of 1 and subsequent de-esterification gave 2-azido-sphingosine containing-GM3 analogue 17, which was converted into lyso-GM3, in which no fatty acyl group was substituted at the sphingosine residue, by selective reduction of the azido group.  相似文献   

10.
ABSTRACT

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at positions 4 or 4′″ have been synthesized in [2+2] block syntheses. After the preparation of precursors with only one free hydroxyl group the deoxy function was introduced by a Barton-McCombie reaction. Thus, glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (4) with octa-O-acetyl-β-maltose (3) gave tetrasaccharide 5 with only one free hydroxyl group at the 4-position. The 4′-position of an allyl maltoside was available selectively after removal of a 4′,6′-cyclic acetal and selective benzoylation of the 6′-position. Reduction of this derivative 11 afforded allyl O-(2,3-di-O-acetyl-6-O-benzoyl-4-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (14), which was deallylated, activated as an trichloroacetimidate, and coupled to 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (20). Several compounds were fully characterized by 1H NMR spectroscopy. Deprotection furnished the monodeoxygenated tetrasaccharides 9 and 23.  相似文献   

11.
Abstract

We have synthesized a single repeat unit of type VIII Group B Streptococcus capsular polysaccharide, the structure of which is {L-Rhap(β1→4)-D-Glcp(β1→4)[Neu5Ac(α2→3)]-D-Galp(β→4)}n. The synthesis presented three significant synthetic challenges namely: the L-Rhap(β→4)-D-Glcp bond, the Neu5Ac(α2→3)-D-Galp bond and 3,4-D-Galp branching. The L-Rhap bond was constructed in 60% yield (α:β 1:1.2) using 4-O-acetyl-2,3-di-O-benzoyl-α-L-rhamnopyranosyl bromide 6 as donor, silver silicate as promotor and 6-O-benzyl-2,3-di-O-benzoyl-1-thio-β-D-glucopyranoside as acceptor to yield disaccharide 18. The Neu5Ac(α2→3) linkage was synthesized in 66% yield using methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-nonulopyranosid]onate as donor and triol 2-(trimethylsilyl) ethyl 6-O-benzyl-β-D-galactopyranoside as acceptor to give disaccharide 21. The 3,4-D-Galp branching was achieved by regioselective glycosylation of disaccharide diol 21 by disaccharide 18 in 28% yield to give protected tetrasaccharide 22. Tetrasaccharide 22 was deprotected to give as its 2-(trimethylsilyl)ethyl glycoside the title compound 1a. In addition the 2-(trimethylsilyl)ethyl group was cleaved and the tetrasaccharide coupled by glycosylation (via tetrasaccharide trichloroacetimidate) to a linker suitable for conjugation.

  相似文献   

12.
Abstract

Using methyl 2,2-bis(ethylthio)propionate as acetalating agent and triflic acid-sulfuryl chloride as catalyst, synthesis of 2,3-trans diequatorial pyruvate ketal was achieved. Starting from D-galactose and L-rhamnose derivatives, methyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl-(1→4)-6-O-benzyl-2,3-O-(1-methoxycarbonyl)ethylidene- α-D-galactopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside and methyl 4,6-di-O-benzyl-2,3-O-(1-methoxy-carbonyl)ethylidene-α-D-galactopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside were synthesized. Removal of the protecting groups from the former, afforded the trisaccharide repeating unit of the K-antigen from E.coli O101:K103:H? in the form of its methyl glycoside methyl ester.  相似文献   

13.
《Tetrahedron: Asymmetry》2005,16(3):733-738
α-d-Galactopyranosyl-(1→6)-[β-d-galactofuranosyl-(1→5)]-β-d-galactofuranosyl-(1→6)-β-d-galactofuranosyl-(1→5)-[α-d-galactopyranosyl-(1→6)]-β-d-galactofuranose, the dimer of the trisaccharide repeating unit of the cell-wall galactans of Bifidobacterium catenulatum YIT 4016, has been synthesized as its dodecyl glycoside 2 by coupling of 2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl-(1→6)-[6-O-acetyl-2,3,5-tri-O-benzoyl-β-d-galactofuranosyl-(1→5)]-2-O-acetyl-3-O-benzyl-β-d-galactofuranosyl trichloroacetimidate 14 with dodecyl 2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl-(1→6)-[2,3,5-tri-O-benzoyl-β-d-galactofuranosyl-(1→5)]-2-O-acetyl-3-O-benzyl-β-d-galactofuranoside 16. The trisaccharide trichloroacetimidate donor 14 and trisaccharide acceptor 16 were regiospecifically prepared by employing 3-O-benzyl-1,2-O-isopropylidene-α-d-galactofuranose 4 as the glycosyl acceptor, and isopropyl 2,3,4,6-tetra-O-benzyl-1-thio-β-d-galactopyranoside 5 and 6-O-acetyl-2,3,5-tri-O-benzoyl-β-d-galactofuranosyl trichloroacetimidate 9 as glycosyl donors.  相似文献   

14.
A pentasaccharide, the major repeating unit of the lipopolysaccharide (LPS) of the nitrogen fixing bacterium Acetobacter diazotrophicus PAL 5 was efficiently synthesized as its allyl glycoside using a regio- and stereo-selective strategy. The key acceptor, allyl 3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranoside (3), was prepared by selective 3-O-acetylation of allyl 4-O-benzoyl-α-l-rhamnopyranoside. Condensation of 3 with 2,3,4,6-tetra-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate furnished the disaccharide 5. Deallylation and subsequent trichloroacetimidation of 5 afforded 2,3,4,6-tetra-O-benzoyl-β-d-glucopyranosyl-(1→2)-3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (10). Selective 3-O-glycosylation of allyl α-l-rhamnopyranoside (1) with 10 followed by benzoylation gave trisaccharide (12), which could be conveniently converted to a donor (14). Condensation of 14 with allyl 3,4-di-O-benzoyl-α-l-rhamnopyranoside (15) gave tetrasaccharide 16. Selective deacetylation of 16 gave the acceptor 17 which was ribosylated to furnish the protected pentasaccharide, and finally deprotection led to the title compound.  相似文献   

15.
Abstract

Five sialyl Lew is X ganglioside analogs containing 4-(2-tetradecylhexadecanoylamino)benzyl group in place of ceramide and a variety of lengths of ethylene glycol chains as the spacer, have been synthesized. Glycosidation of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-glacto-2-nonulopyranosylonate)-(2→3)-O-(4-O-acetyl-2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-acetylα-L-fucopyranosyl)-(1→3)]-2,4-di-O-benzoyl-α-D-glucopyranosyl trichloroacetimidate (13) with oligo ethyleneglycol monobenzyl ether derivatives 9, 10, 11 and 12, prepared from the corresponding oligo ethyleneglycols by 4-nitrobenzylation, reduction and N-acylation with 2-tetradecylhexadecanoic acid, using boron trifluoride etherate gave the corresponding glycolipid derivatives 14, 15, 16 and 17. A similar glycosidation of 13 with 4-nitrobenzyl alcohol gave the 4-nitrobenzyl glycoside 18, which was converted via reduction of nitro group and N-acylation into the corresponding glycolipid derivative 19. Compounds 14-17 and 19 were transformed into the title compounds by O-deacylation and hydrolysis of methyl ester group in good yields.

  相似文献   

16.
ABSTRACT

Starting from the known methyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-(1→4)-2-O-benzoyl-α-L-rhamnopyranoside, the stepwise linear syntheses of methyl α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→ 3)-[α-D-glucopyranosyl-(1→ 4)]-α-L-rhamnopyranoside (AB(E)C, 4), and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→ 2)-α-L-rhamnopyranosyl-(1→ 3)-[α-D-glucopyranosyl-(1→4)]-α-L-rhamnopyranoside (DAB(E)C, 5) are described; these constitute the methyl glycosides of a branched tetra- and pentasaccharide fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a, respectively. The chemoselective O-deacetylation at position 2B and/or 2A of key tri- and tetrasaccharide intermediates bearing a protecting group at position 2C was a limiting factor. As such a step occurred once in the synthesis of 4 and twice in the synthesis of 5, the regioselective introduction of residue A on a B(E)C diol precursor (12) and that of residue D on an AB(E)C diol precursor (19) was also attempted. In all cases, a trichloroacetimidate donor was involved. The latter pathway was found satisfactory for the construction of the target 4 using the appropriate tri-O-benzoyl rhamnosyl donor. However, attempted chain elongation of 12 using 2-O-acetyl-3,4-di-O-benzyl-α-L-rhamnopyranosyl trichloroacetimidate (8) resulted in an inseparable mixture which needed to be benzoylated to allow the isolation of the target tetrasaccharide. Besides, condensation of the corresponding tetrasaccharide acceptor and the N-acetylglucosaminyl donor was sluggish. As the target pentasaccharide was isolated in a poor yield, this route was abandoned.  相似文献   

17.
张志平  衣悦涛  宁君 《有机化学》2005,25(10):1240-1243
以已知的2,3,4,6-四-O-苯甲酰基--D-葡萄吡喃糖-(13)-[2,3,4,6-四-O-苯甲酰基-β-D-葡萄吡喃糖-(16)]-2,4- 二-O-乙酰基-β-D-葡萄吡喃糖-(13)-2,4,6-三-O-乙酰基-α-D-葡萄吡喃糖三氯乙酰亚胺酯(2)为供体, 以2-O-苯甲酰 基-4,6-O-苄叉基-α-D-葡萄吡喃糖烯丙基苷(4)作为受体, 立体专一性地偶联得到β-1,3连接的五糖5. 五糖5酸解脱去4,6-苯亚甲基基后与2,3,4,6-四-O-苯甲酰基-α-D-葡萄吡喃糖三氯乙酰亚胺酯(7)偶联, 区域和立体专一性地得到全保护的β-1,3主链β-1,6支链的六糖8. 六糖8脱保护后得到目标化合物香菇多糖核心片段六糖9. 发展了合成该类化合物的一种新方法.  相似文献   

18.
Abstract

Four sialyl and sulfo Lex analogs containing glucose in place of N-acetylglucosamine, and a ceramide or 2-(tetradecyl)hexadecyl residue, have been synthesized. Condensation of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-O-(4-O-acetyl-2,6-diO-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,4-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (1) with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3, diol (2) or 2-(tetradecyl)-hexadecyl-1-ol (3) gave the corresponding β-glycosides 4 and 7. Compound 4 was converted into the ganglioside 6 via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and saponification of the methyl ester group. Hydrolysis of the O-acyl groups in 7 followed by saponification of the methyl ester, gave sialyl Lex ganglioside analog 8 containing a branched fatty alkyl residue. On the other hand, glycosylation of O-(4-O-acetyl-2,6-di-O-benzoyl-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-[O-(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (13), prepared from 2-(trimethylsilyl)ethyl O-(2,6-di-O-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-β-d-glucopyranoside (9) via selective 3-O-levulinylation, acetylation, removal of the 2-(trimethylsilyl)ethyl group, with 2 or 3, gave the desired β-glycosides 14 and 19. Selective reduction of the axido group in 14 followed by coupling with octadecanoic acid gave the ceramide derivative 16. Removal of the levulinyl group in 16 and 19, treatment with sulfur trioxide pyridine complex and subsequent hydrolysis of the protecting groups yielded the corresponding sulfo Lex analogs 18 and 21.  相似文献   

19.
Abstract

The synthesis is reported of 3-aminopropyl 3-O-[4-O(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-α-L-rhamnopyranoside (34), 3-aminopropyl 2-acetamido-3-O-[4-0-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-2-deoxy-β-D-galactopyranoside (37), 3-aminopropyl 3-O-[4-O-(β-L-rhamnopyranosyl)-α-D-glucopyranosyl]-α-D-galactofuranoside (41), and 3-aminopropyl 4-O-[4-O-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranoside (45). These are spacer-containing fragments of the capsular polysaccharides of Streptococcus pneumoniae type 2, 7F, 22F, and 23F, respectively, which are constituents of Pneumovax© 23. 2,3,4-Tri-O-benzyl-α-L-rhamnopyranosyl bromide was coupled to l,6-anhydro-2,3-di-(O-benzyl-β-D-glucopyranose (3). Opening of the anhydro ring, removal of AcO-1, and imidation of l,6-anhydro-2,3-di- O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-L-rhamnopyranosyl)-β-D-glucopyranose (4β) afforded 6-O-acetyl-2,3-di-O-ben-zyl-4-O-(2,3,4-tri- O-benzyl-β-L-rhamnopyranosyl)-αβ-D-glucopyranosyl trichloroacet-imidate (7αβ). Condensation of 7αβ with 3-N-benzyloxycarbonylaminopropyl 2-O-ben-zyl-5,6-O-isopropylidene-α-D-galactofuranoside (26), followed by deprotection gave 41 Opening of the anhydro ring of 4 p followed by debenzylation, acerylauon, removal of AcO-1, and imidation yielded 2,3,6-tri-(9-aceryl-4-O-(2,3,4-tri-0-acetyl-P-L-rharnnopyran-.-osyl)-α-D-glucopyranosyl trichloroacetimidate (11). Condensation of 11 with 3-N-bcn-zyloxycarbonylaminopropyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (18), with 3-N-bcn-zyloxycarbonylaminopropyl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyran-oside (21), or with 3-N -benzyloxycarbonylaminopropyl 2-O-acetyl-3-O-allyl-6-O-benzyl-β-D-galactopyranoside (31), followed by deprotection afforded 34, 37, and 45, respectively.  相似文献   

20.
ABSTRACT

The syntheses of α-D-GlcpNAc-(1→4)-β-D-Galp-(1→4)-β-D-GlcNAc-(1→O)-(CH2)15CH3 (1) and fragments thereof, corresponding to structures found in human ovarian cyst fluid, are described. Silver triflate promoted coupling of 3,4,6-tri-O-acetyl-2-azido-2-deoxy-β-D-glucopyranosyl bromide (12) and galactose acceptor (11) gave a disaccharide donor (13), which was readily transformed into the corresponding bromo-derivative 18. For the synthesis of disaccharide β-D-Galp-(1→4)-D-GlcNAc, several differently protected glucosamine acceptors were prepared. It was found that cetyl alcohol needed to be introduced after the formation of the β-galactoside bond. Glycosylation of pent-4-enyl 3,6-di-O-benzyl-2-deoxy-2-tetrachlorophthalimido-β-D-glucopyranoside (30) with (3,4,6-tri-O-acetyl-2-azido-2-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-α-D-galactopyranosyl bromide (18) by use of silver triflate as promoter gave the desired trisaccharide 31. Finally 31 was transformed via coupling to the long alkyl chain aglycon and deprotection into the title compound 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号