首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ABSTRACT

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at positions 4 or 4′″ have been synthesized in [2+2] block syntheses. After the preparation of precursors with only one free hydroxyl group the deoxy function was introduced by a Barton-McCombie reaction. Thus, glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (4) with octa-O-acetyl-β-maltose (3) gave tetrasaccharide 5 with only one free hydroxyl group at the 4-position. The 4′-position of an allyl maltoside was available selectively after removal of a 4′,6′-cyclic acetal and selective benzoylation of the 6′-position. Reduction of this derivative 11 afforded allyl O-(2,3-di-O-acetyl-6-O-benzoyl-4-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (14), which was deallylated, activated as an trichloroacetimidate, and coupled to 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (20). Several compounds were fully characterized by 1H NMR spectroscopy. Deprotection furnished the monodeoxygenated tetrasaccharides 9 and 23.  相似文献   

2.
Abstract

We have synthesized a single repeat unit of type VIII Group B Streptococcus capsular polysaccharide, the structure of which is {L-Rhap(β1→4)-D-Glcp(β1→4)[Neu5Ac(α2→3)]-D-Galp(β→4)}n. The synthesis presented three significant synthetic challenges namely: the L-Rhap(β→4)-D-Glcp bond, the Neu5Ac(α2→3)-D-Galp bond and 3,4-D-Galp branching. The L-Rhap bond was constructed in 60% yield (α:β 1:1.2) using 4-O-acetyl-2,3-di-O-benzoyl-α-L-rhamnopyranosyl bromide 6 as donor, silver silicate as promotor and 6-O-benzyl-2,3-di-O-benzoyl-1-thio-β-D-glucopyranoside as acceptor to yield disaccharide 18. The Neu5Ac(α2→3) linkage was synthesized in 66% yield using methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-nonulopyranosid]onate as donor and triol 2-(trimethylsilyl) ethyl 6-O-benzyl-β-D-galactopyranoside as acceptor to give disaccharide 21. The 3,4-D-Galp branching was achieved by regioselective glycosylation of disaccharide diol 21 by disaccharide 18 in 28% yield to give protected tetrasaccharide 22. Tetrasaccharide 22 was deprotected to give as its 2-(trimethylsilyl)ethyl glycoside the title compound 1a. In addition the 2-(trimethylsilyl)ethyl group was cleaved and the tetrasaccharide coupled by glycosylation (via tetrasaccharide trichloroacetimidate) to a linker suitable for conjugation.

  相似文献   

3.
Abstract

Anomeric O-alkylation of mannopyranoses with various protecting groups was investigated using mannose derivatives and 2,3-O-isopropylidene-l-O-trifluoro-methanesulfonyl-D-glycerol (1) as alkylating agent. Generally, in polar solvents higher α/β ratios were obtained than in nonpolar solvents. Sterically demanding protecting groups at the 6-O-position and polar solvents led to higher yields. Reactivity differences were explained by different complex formation. Based on these results mannopyranosyl-α(1-4) glucopyranosides 26 and 27 were synthesized using mannose derivatives 5 and 6 having a 6-O-(p-methoxyphenyl)diphenylmethyl group and galactosyl trifluoromethane-sulfonate 24 or nonafluorobutanesulfonate (nonaflate) 25, respectively, as alkylating agents.  相似文献   

4.
Abstract

Block condensation of fully protected donor ethyl 1,2,3,4-tetra-O-benzyl-D-Rib-(5→P→6)-2,3,4-tri-O-benzoyl-l-thio-β-D-Glcp (2), having a (5→6)-phosphotriester union between the ribitol and the glucopyranosyl moieties, with the free 3′-OH group in the acceptor methyl 2-acetamido-4-O-(2-acetamido-4-(benzyloxycarbonyl)amino-2,4,6-trideoxy-α-D-Galp)-3,6-di-O-benzyl-2-deoxy-α-D-Galp (3), under the agency of N-iodosuccinimide and triflic acid, gave the fully protected tetrameric fragment 22. Elimination of the 2-cyanoethyl group from the phosphotriester and subsequent debenzoylation, followed by hydrogenolysis of the benzyl and benzyloxycarbonyl groups provided the target tetramer methyl D-Rib-(5→P→6)-D-Glcp-β(1→3)-Sugp-α(1→4)-α-D-GalpNAc (1).  相似文献   

5.
Abstract

O-(6-O-Benzoyl-β-d-galactopyranosyl)-(1→4)- and O-(2, 3, 4-tri-O-acetyl-β-d-galactopyranosyl)-(1→4)-2, 3, 6-tri-O-benzyl-N-benzyloxycarbonyl-1, 5-dideoxy-1, 5-imino-d-glucitols (4 and 12) were each coupled with methyl (methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid)onate (5) in acetonitrile medium in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) or N-iodosuccinimide/trifluoromethanesulfonic acid to give the corresponding α-sialyl-(2 → 3)- and α-sialyl-(2 → 6)-glycosides (6 and 13α), which were converted to novel ganglioside GM3-related trisaccharides (9 and 15) containing N-methyl-1-deoxynojirimycin.  相似文献   

6.
ABSTRACT

Coupling of the sodium salt of S-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-galacto-2-nonulopyranosylonate)-(2→'6)-2,3,4-tri-O-acetyl-1,6-dithio-β-D-glucopyranose (5), -β-D-galactopyranose (8), or S-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→'6)-O-(2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranosyl)-(1→'4)-2,3,6-tri-O-acetyl-1-thio-β-D-glucopyranose (12), which were prepared from the corresponding 1-hydroxy compounds, 1, 2, and 9, via 1-chlorination, displacement with thioacetyl group, and S-deacetylation, with (2S,3R,4E)-2-azido-3-O-benzoyl-1-O-(p-toluenesulfonyl)-4-octadecene-1,3-diol (13), gave the corresponding β-thioglycosides 14, 18 and 22, respectively in good yields. The β-thioglycosides obtained were converted, via selective reduction of the azide group, condensation with octadecanoic acid, and removal of the protecting groups, into the title compounds.  相似文献   

7.
Abstract

Methyl 6-amino-6-deoxy-α-D-glycopyranosides having the D-gluco, D-manno and D-galacto configurations (1a–3a), 2-aminoethanol (4a), 1-amino-1-deoxy-D-glucitol (5a), and 1-amino-1-deoxy-4-O-β-D-glucopyranosyl-D-glucitol (6a) were transformed into the corresponding per-O-acetyl amine hydrochlorides 1d–6d in excellent yields by using the 2,2-(diethoxycarbonyl)vinyl group for temporary amine protection. Deprotection of the peracetylated enamines 1c–6c was effected with chlorine in chloroform and no O→N acetyl migration occurred when short reaction times were used. Treatment of 1d–6d with thiophosgene resulted in the formation of peracetyl isothiocyanates (1e–6e).  相似文献   

8.
Abstract

A systematic synthesis of sulfatide (I) and novel sulfatide analogs (II-VI) carrying 2-(tetradecyl)hexadecyl group as a ceramide substitute is described. The 3-O-, 4-O- and 3,4-di-O-levulinoyl derivatives of galactopyranosyl trichloroacetimidates (1, 12, and 13) were coupled with (2S,3R,4E)-3-O-acetyl-2-octadecanamido-4-octadecene-1,3-diol or 2-(tetradecyl)hexadecan-1-ol. The resulting glycolipids (2, 4, 14, and 15) were each transformed, by selective removal of the levulinoyl group(s), and successive sulfation and de-O-acylation, into the 3-sulfates (I, II), 4-sulfate (III), and 3,4-disulfate (IV). The 6-sulfate (V) was prepared from 2-(tetradecyl)hexadecyl β-D-galactopyranoside (21) via the 6-O-t-butyldimethylsilyl derivative, while the 3′-sulfate of 2-(tetradecyl)hexadecyl β-D-lactoside (VI) was synthesized from 2-(trimethylsilyl)ethyl 3′-O-benzyl-β-D-lactoside (26). The structures of the sulfated glycolipids (I-VI) were characterized by ion-spray MS, MS/MS, and 1H NMR spectrometry.

  相似文献   

9.
Abstract

Suitably protected 1-deoxynojirimycin (l, 5-dideoxy-l, 5-imino-D-glucitol; DNJ) and its 2-acetamido derivative, i.e., 2, 3, 6-tri-O-benzyl-.N-benzyloxycarbonyl-l, 5-dideoxy-1, 5-imino-D-glucitol (6) and 2-acetamido-3, 6-di-O-benzyl-N-benzyloxycarbonyl-1, 2, 5-trideoxy-l, 5-imino-D-glucitol (14) were each coupled with methyl 2, 3, 4, 6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (15) in the presence of dimethyl(methylthio)-sulfonium triflate (DMTST) as a promoter, to give 16 and 18, which were converted to the novel disaccharides (20, 21) related to lactose and lactosamine. Coupling of 14with methyl 3, 4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-l-thio-β-D-glucopyranoside (22) gave achitobiose analog (25). O-(β-D-Galactopyranosyl)-(l→3)-DNJ derivatives (38, 39) and O-(β-D-glucopyranosyl)-(l→3)-DNJ (45) were also synthesized. Conformational analysis of a variety of DNJ derivatives, based on the 1H NMR data, is also discussed.  相似文献   

10.
Abstract

4-Nitrophenyl 2,3-O-isopropylidine-α-D-mannopyranoside 2 was condensed with O-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl)-(1→2)-3,4,6-tri-O-acetyl-α-D-mannopyranosyl bromide 1 and 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl bromide 11 in the presence of mercuric cyanide. Products were deprotected to yield, respectively, 4-nitrophenyl O-α-D-mannopyranosyl-(1→2)-O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 6 and 4-nitrophenyl O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 14. The 4-nitrophenyl group of 6 was reduced to give title trisaccharide. Bromide 1 was also condensed with methyl 2,3,4-tri-O-benzyl-α-D-manopyranoside 3 in the presence of silver trifluoromethanesulfonate and tetramethylurea to give protected trisaccharide derivative which was deprotected to furnish, methyl O-α-D-mannopyranosyl-(1→2)-O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 10. The identities of all protected and deprotected compounds were supported by 1H and 13C NMR spectral data.  相似文献   

11.
Abstract

Sulfo Lewisx analog containing 1-deoxynojirimycin (13) has been efficiently synthesized. Glycosidation of ethyl 2,3,4-tri-O-benzyl-1-thio-β-D-fucopyranoside (5) with O-2,6-di-O-benzoyl-3,4-isopropylidene-β-D-galactopyranosyl)-(1→4)-2,6-di-O-benzoyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-glucitol (4), prepared from O-β-D-galactopyranosyl-(1→4)-1,5-dideoxy-1,5-imino-D-glucitol (1) via 3 steps, and subsequent acid hydrolysis of the isopropylidene group gave the desired trisaccharide diol derivative (7) in good yield. Compound 7 was easily converted into 3′-O-sulfo Lewisx analog (13) via 6 steps in high yield.

  相似文献   

12.

Transformation of 1‐O‐unprotected glucose and galactose derivatives (1ad) into O‐glycosyl dichloro‐cyanoacetimidates (2ad) was performed with dichloro‐cyanoacetonitrile in the presence of DBU as base. Reaction with different acceptors (3ad) under TMSOTf catalysis afforded glycosides 4 in high yields. Competition experiments with O‐glucopyranosyl trichloroacetimidate 10a, bearing a 4‐tert‐butylbenzyl group at 6‐O, and O‐glucopyranosyl dichloro‐cyanoacetimidate 10b, bearing a 4‐methylbenzyl group at 6‐O, displayed similar reactivities for these two types of glycosyl donors.  相似文献   

13.
Abstract

Five sialyl Lew is X ganglioside analogs containing 4-(2-tetradecylhexadecanoylamino)benzyl group in place of ceramide and a variety of lengths of ethylene glycol chains as the spacer, have been synthesized. Glycosidation of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-glacto-2-nonulopyranosylonate)-(2→3)-O-(4-O-acetyl-2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-acetylα-L-fucopyranosyl)-(1→3)]-2,4-di-O-benzoyl-α-D-glucopyranosyl trichloroacetimidate (13) with oligo ethyleneglycol monobenzyl ether derivatives 9, 10, 11 and 12, prepared from the corresponding oligo ethyleneglycols by 4-nitrobenzylation, reduction and N-acylation with 2-tetradecylhexadecanoic acid, using boron trifluoride etherate gave the corresponding glycolipid derivatives 14, 15, 16 and 17. A similar glycosidation of 13 with 4-nitrobenzyl alcohol gave the 4-nitrobenzyl glycoside 18, which was converted via reduction of nitro group and N-acylation into the corresponding glycolipid derivative 19. Compounds 14-17 and 19 were transformed into the title compounds by O-deacylation and hydrolysis of methyl ester group in good yields.

  相似文献   

14.
Abstract

Stereocontrolled synthesis of sialyl Lex epitope and its ceramide derivative with regard to the introduction of galactose or β-D-galactosyl ceramide into the terminal N-acetylglucosamine residue of sialyl Lex determinant is described. Königs-Knorr condensation of 2-(trimethylsilyl)ethyl 2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (4) with 3, 4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-D-glucopyranosyl bromide (5) gave the desired β-glycoside 6, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-4, 6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(l→3)-2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (8) via removal of the phthaloyl and O-acetyl groups, followed by N-acetylation and 4, 6-O-benzylidenation. Glycosylation of 8 with methyl 2, 3, 4-tri-O-benzyl-1-thio-β-L-fucopyranoside (9) gave the α-glycoside (10), which was transformed by reductive ring-opening of the benzyliderie acetal into the acceptor (11). Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 11 with methyl O-(methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2, 4, 6-tri-O-benzoyl-l-thio-β-D-galactopyra-noside (12) afforded the desired pentasaccharide (13), which was converted into the α-trichloroacetimidate 16 via reductive removal of the benzyl groups, then O-acetylation, removal of the 2-(trimethyIsilyl)ethyl group and treatment with trichloroacetonitrile. Condensation of 16 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l, 3-diol (18) gave the β-glycoside 19, which was transformed into the title compound 21, via reduction of the azido group, coupling with octadecanoic acid, O-deacylation and hydrolysis of the methyl ester group. On the other hand, O-deacylation of 13 and subsequent hydrolysis of the methyl ester group gave the pentasaccharide epitope 17.  相似文献   

15.
Abstract

Reaction of 2-O-unprotected 1-O-silyl-protected D-glucose and D-galactose derivatives 5a-d with benzyl bromide in the presence of sodium hydride as the base afforded 1-O-benzyl 2-O-silyl derivatives 6aα/β - 6dα/β. Thus, prior to anomeric O-benzylation, trans-1,2-silyl group migration takes place. Ensuing removal of the 2-O-silyl group furnishes 2-O-unprotected compounds 8aα/β - 8dα/β, which are useful building blocks. More prone to 1-O-silyl group migration is mannose as shown for derivatives of 4,6-O-benzylidene-D-mannose 9. Cis-1,2- and cis-2,3-silyl group migrations affording compounds 15 and 13 were already observed on deacetylation of the thexyldimethylsilyl 2,3-di-O-acetyl derivative 12β under Zemplén conditions.  相似文献   

16.
Abstract

Methyl 6-O-, 3-O- and 2-O-(2′-hydroxypropyl)-α-D-glucopyranosides (4,8, and 12) were synthesized starting from methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside (1), methyl 4,6-O-benzylidene-α-D-glucopyranoside (5), and methyl 3-O-benzyl-4,6-O-benzylidene-D-glucopyranoside (9), respectively. Overall yields were 88%, 6% and 26% of 4, 8 and 12, respectively, with the 2-ether (12) being crystalline and the 3-ether (8) a single diastereomer.

  相似文献   

17.
Abstract

The regioselective enzymic hydrolysis of methyl 2,3-di-O-acetyl-5-deoxy-α-D-xylofuranoside (1) and methyl 2,3-di-O-acetyl-5-deoxy-β-D-xylofuranoside (2) in the presence of pig liver esterase (PLE) was studied by GLC. Diacetate 2 gave exclusively methyl 3-O-acetyl-5-deoxy-β-D-xylofuranoside (6) while diacetate 1 produced both methyl 2-O-acetyl-5-deoxy-α-D-xylofuranoside (3) and methyl 3-O-acetyl-5-deoxy-α-D- xylofuranoside (4) in low yield. At high conversion, methyl 5-deoxy-α-D-xylofuranoside (7) was the only product. The first-order rate constants, Michaelis constants, and maximal velocities were determined for 1, 2, and the monoacetates 3 - 6. The results were interpreted on the basis of a recent active-site model for PLE.  相似文献   

18.
ABSTRACT

The terminal glycosyl acceptor methyl 2,3-di-O-benzyl-α-L-fucopyranoside (6) was extended three times with the non-terminal glycosyl donor ethyl 4-O-acetyl-2,3-di-O-benzyl-1-thio-ß-L-fucopyranoside (13) via iodonium-ion assisted glycosylations and intermittent removal of the C-4 acetyl group in intermediate dimer 16 and trimer 18. The 4-O-acetyl group in trimer 18 and tetramer 20 was highly resistant towards basic hydrolysis. The latter could be nullified by using dichloroacetyl instead of acetyl to protect the C-4-OH in the donor. The exclusive formation of 1,2-cis-linked oligomers could be explained by through-bond interactions exerted by the electron-withdrawing C-4 acyl group in the glycosyl donor.  相似文献   

19.
Abstract

A first total synthesis of a β-series ganglioside GQ1β (IV3Neu5Acα2, III6Neu5Acα2-Gg4Cer) is described. Regio- and stereoselective dimeric sialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-O-2,3,6-tri-O-benzyl-β-d-glucopyranoside (3) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (4) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter gave the desired pentasaccharide 5 containing α-glycosidically-linked dimeric sialic acids. This was transformed into the acceptor 6 by removal of the levulinyl group. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-d-galacto-2-nonulopyranosylonate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) with 6, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 8 in high yield. Compound 8 was converted into α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

20.
Abstract

Four derivatives of β-maltosyl-(1→4)-trehalose were prepared, each with two deoxy functions in one of the constitutive disaccharide building blocks. 2,3-Di-O-acetyl-4,6-dideoxy-4,6-diiodo-α-D-galactopyranosyl- (1→4) ?1,2,3,6-tetra-O-acetyl-D-glucopyranose (3) was employed as a precursor for the 4?,6?-dideoxygenated tetrasaccharide 9: coupling of 3 with 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzylidene-α-D-glucopyranoside (4) furnished the tetrasaccharide 5 which was deiodinated and deprotected to yield the target tetrasaccharide 9. Secondly, the dideoxygenated maltose derivative 3-deoxy-4,6-O-isopropylidene-2-O-pivaloyl-β-D-glucopyranosyl- (1→4) ?1,6-anhydro-3-deoxy-2-O-pivaloyl-β-D-glucopyranose (10) was ring-opened to the anomeric acetate 11. A [2+2] block synthesis with 4 in TMS triflate mediated glycosylation gave a tetrasaccharide which was deprotected to the 3″,3?-dideoxygenated analogue of β-maltosyl-(1→4)-trehalose. For the third tetrasaccharide, 2,3,2″,3′-tetra-O-benzyl-α,α-trehalose was iodinated at the primary positions and deiodinated in the presence of palladium-on-carbon, then this acceptor was selectively glycosylated with hepta-O-acetyl-maltosyl bromide (20). Removal of protective groups furnished the maltosyl trehalose tetrasaccharide deoxygenated at positions C-6 and C-6′. to prepare a 3,3′-dideoxygenated trehalose, the free hydroxyl groups of 2-O-benzyl-4,6-O-(R)-benzylidene-α-D-glucopyranosyl 2-O-benzyl-4,6-O-(R)-benzylidene-α-D-glucopyranoside (25) were reduced by Barton-McCombie deoxygenation. One of the benzylidene groups was opened reductively with sodium cyanoborohydride. The resulting free hydroxyl group at the 4′-position was glycosylated in a Koenigs-Knorr reaction with 20 to yield the 3,3′-dideoxygenated tetrasaccharide 32, the fourth target oligosaccharide, after deprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号