首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Crystallization (from ethyl acetate solution) of 2‐(4‐chlorophenyl)‐4‐methylchromenium perchlorate, C16H12ClO+·;ClO4, (I), yields two monoclinic polymorphs with the space groups P21/n [polymorph (Ia)] and P21/c [polymorph (Ib)]; in both cases, Z = 4. Cations and anions, disordered in polymorph (Ib), form ion pairs in both polymorphs as a result of Cl—O...π interactions. Related by a centre of symmetry, neighbouring ion pairs in polymorph (Ia) are linked viaπ–π interactions between cationic fragments, and the resulting dimers are linked through a network of C—H...O(perchlorate) interactions between adjacent cations and anions. The ion pairs in polymorph (Ib), arranged in pairs of columns along the a axis, are linked through a network of C—H...O(perchlorate), C—Cl...π, π–π and C—Cl...O(perchlorate) interactions. The aromatic skeletons in polymorph (Ia) are parallel in the cationic fragments involved in dimers, but nonparallel in adjacent ion pairs not constituting dimers. In polymorph (Ib), these skeletons are parallel in pairs of columns, but nonparallel in adjacent pairs of columns; this is visible as a herring‐bone pattern. Differences in the crystal structures of the polymorphs are most probably the cause of their different colours.  相似文献   

2.
Two polymorphs of 2,6‐dichloropurine, C5H2Cl2N4, have been crystallized and identified as the 9H‐ and 7H‐tautomers. Despite differences in the space group and number of symmetry‐independent molecules, they exhibit similar hydrogen‐bonding motifs. Both crystal structures are stabilized by intermolecular N—H...N interactions that link adjacent molecules into linear chains, and by some nonbonding contacts of the C—Cl...π type and by π–π stacking interactions, giving rise to a crossed two‐dimensional herringbone packing motif. The main structural difference between the two polymorphs is the different role of the molecules in the π–π stacking interactions.  相似文献   

3.
Two polymorphs of the title compound, C5H5NO, (I), have been obtained from ethanol. One polymorph crystallizes in the monoclinic space group C2/c [henceforth (I)‐M], while the other crystallizes in the orthorhombic space group Pbca [henceforth (I)‐O]. In the two forms, the lattice parameters, cell volume and packing motifs are very similar. There are also two independent molecules of 4‐pyridone in each asymmetric unit. The molecules are linked by N—H...O hydrogen bonds into one‐dimensional zigzag chains extending along the b axis in the (I)‐M polymorph and along the a axis in the (I)‐O polymorph, with the graph set C22(12). The structures are stabilized by weak C—H...O hydrogen bonds linking adjacent chains, thus forming a ring with the graph set R65(28). The significance of this study lies in the analysis of the hydrogen‐bond interactions occurring in these structures. Analyses of the crystal structures of the two polymorphs of 4‐pyridone are helpful in elucidating the mechanism of the generation of spectroscopic effects observed in the IR spectra of these polymorphs in the frequency range of the N—H stretching vibration band.  相似文献   

4.
The title salt, C3H8NO2+·C2HO4, formed between l ‐cysteine and oxalic acid, was studied as part of a comparison of the structures and properties of pure amino acids and their cocrystals. The structure of the title salt is very different from that formed by oxalic acid and equivalent amounts of d ‐ and l ‐cysteine molecules. The asymmetric unit contains an l ‐cysteinium cation and a semioxalate anion. The oxalate anion is only singly deprotonated, in contrast with the double deprotonation in the crystal structure of bis(dl ‐cysteinium) oxalate. The oxalate anion is not planar. The conformation of the l ‐cysteinium cation differs from that of the neutral cysteine zwitterion in the monoclinic and orthorhombic polymorphs of l ‐cysteine, but is similar to that of the cysteinium cation in bis(dl ‐cysteinium) oxalate. The structure of the title salt can be described as a three‐dimensional framework formed by ions linked by strong O—H...O and N—H...O and weak S—H...O hydrogen bonds, with channels running along the crystallographic a axis containing the bulky –CH2SH side chains of the cysteinium cations. The cations are only linked through hydrogen bonds via semioxalate anions. There are no direct cation–cation interactions via N—H...O hydrogen bonds between the ammonium and carboxylate groups, or via weaker S—H...S or S—H...O hydrogen bonds.  相似文献   

5.
A first preliminary report on the crystal structure of a hydrated salt formulated as [Ge(taci)2]Cl4·13H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol) appeared more than 20 years ago [Ghisletta (1994). PhD thesis, ETH Zürich. Switzerland]. At that time it was not possible to discriminate unambiguously between the positions of some of the chloride ions and water O atoms, and disorder was thus postulated. In a new determination, a conclusive scheme of hydrogen bonding proves to be a particularly appealing aspect of the structure. Single crystals of the title compound, C12H30GeN6O64+·4Cl·6H2O or [Ge(taci)2]2Cl8·12H2O, were grown from an aqueous solution by slow evaporation of the solvent. The two [Ge(taci)2]4+ cations exhibit a double‐adamantane‐type structure with exclusive O‐atom coordination and approximate D3d symmetry. The taci ligands adopt a zwitterionic form with deprotonated hydroxy groups and protonated amino groups. Both cations are hydrogen bonded to six water molecules. The structure of the hydration shell of the two cations is, however, slightly different. The {[Ge(taci)2]·6H2O}4+ aggregates are interlinked in all three dimensions by further hydrogen bonds of the types N—H...Cl...H—N, N—H...O(H)2...H—N, (Ge)O...H—O(H)...H—N, N—H...O(H)—H...Cl...H—N, (Ge)O...H—O—H...Cl...H—N, N—H...O(H)—H...Cl...H—(H)O...H—N, (Ge)O...H—O—H...Cl...H—(H)O...H—N and Ge(O)...H—O—H...Cl...H—O—H...O(Ge).  相似文献   

6.
The title compound, C18H18Cl4N2O2, crystallizes as monoclinic and orthorhombic polymorphs from CHCl3–CH3OH solution. In both polymorphic forms, the molecule lies on a crystallographic centre of inversion (at the piperazine ring centroid) and exhibits an intramolecular O—H...N hydrogen bond. In the monoclinic polymorph (space group P21/c), the molecules are linked by intermolecular C—H...Cl hydrogen bonds into a ribbon sheet built from R88(34) rings. In the orthorhombic polymorph (space group Pbcn), the molecules are linked by intermolecular C—H...O hydrogen bonds into a ribbon sheet of R66(34) rings. The sheets in the orthorhombic polymorph are crosslinked into a three‐dimensional framework by π–π stacking interactions.  相似文献   

7.
Single crystals of a triclinic polymorphic form of mer‐μ‐oxalato‐bis[chloridotripyridinecobalt(II)] pyridine disolvate, [Co2(C2O4)Cl2(C5H5N)6]·2C5H5N, have been prepared by solvothermal methods. The structure and geometric parameters strongly resemble those of the previously reported monoclinic polymorph [Bolte (2006). Acta Cryst. E 62 , m597–m598]. In both polymorphic forms, the dinuclear complex molecules are located on a crystallographic centre of inversion, with the CoII cations in a distorted octahedral environment consisting of a chloride ligand, three pyridine ligands and a chelating bis‐bidentate oxalate ligand. This last serves as a bridging ligand between two CoII cations. The polymorphs differ in the mutual orientation of their pyridine ligands in the dinuclear molecules and in their intermolecular connectivity. In the triclinic polymorph, C—H...O, C—H...Cl, C—H...π and π–π interactions link the dinuclear molecules into a three‐dimensional structure. Pyridine solvent molecules are attached to this structure via weak interactions.  相似文献   

8.
Details of the structures of two conformational polymorphs of the title compound, C12H17N2OS+·Cl, are reported. In form (I) (space group P), the two N—H groups of the cation are in a trans conformation, while in form (II) (space group P21/c), they are in a cis arrangement. This results in different packing and hydrogen‐bond arrangements in the two forms, both of which have extended chains lying along the a direction. In form (I), these chains are composed of centrosymmetric R42(18) (N—H...Cl and O—H...Cl) hydrogen‐bonded rings and R22(18) (N—H...O) hydrogen‐bonded rings. In form (II), the chains are formed by centrosymmetric R42(18) (N—H...Cl and O—H...Cl) hydrogen‐bonded rings and by R42(12) (N—H...Cl) hydrogen‐bonded rings.  相似文献   

9.
Although having been described as a liquid in the literature for 41 years, 1,2‐bis[(pyridin‐2‐ylmethyl)sulfanyl]ethane, C14H16N2S2, (I), has now been obtained as monoclinic crystals via a new and convenient method of purification. Molecules of (I) are located on crystallographic inversion centres and are held together by C—H...N and C—H...S interactions, resulting in the formation of a three‐dimensional network structure. In addition, two polymorphs of the corresponding hydrochloride salt, 2‐[({2‐[(pyridin‐1‐ium‐2‐ylmethyl)sulfanyl]ethyl}sulfanyl)methyl]pyridin‐1‐ium dichloride, C14H18N2S22+·2Cl, (II) and (III), have been isolated. Molecules of (II) and (III) have similar conformations and are located on inversion centres. Both polymorphs form three‐dimensional networks through N—H...Cl, C—H...Cl and C—H...S interactions. The structure of (III) displays voids of 35 Å3.  相似文献   

10.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

11.
The structure of trans‐3‐(3‐pyridyl)acrylic acid, C8H7NO2, (I), possesses a two‐dimensional hydrogen‐bonded array of supramolecular ribbons assembled via heterodimeric synthons between the pyridine and carboxyl groups. This compound is photoreactive in the solid state as a result of close contacts between the double bonds of neighbouring molecules [3.821 (1) Å] along the a axis. The crystal structure of the photoproduct, rctt‐3,3′‐(3,4‐dicarboxycyclobutane‐1,2‐diyl)dipyridinium dichloride, C16H16N2O42+·2Cl, (II), consists of a three‐dimensional hydrogen‐bonded network built from crosslinking of helical chains integrated by self‐assembly of dipyridinium cations and Cl anions via different O—H...Cl, C—H...Cl and N+—H...Cl hydrogen‐bond interactions.  相似文献   

12.
The lupane triterpenoid betulonic aldehyde [also known as betulonal; systematic name: lup‐20(29)‐en‐28‐al‐3‐one, C30H46O2] is a product of betulin oxidation. Crystals were obtained from hexane [form (I)] and dimethyl sulfoxide [form (II)] solutions. Forms (I) and (II) are both orthorhombic. The molecular geometric parameters in the two forms are similar, but the structures are different with respect to the crystal packing. Polymorph (I) contains two independent molecules in the asymmetric unit, while polymorph (II) contains only one molecule, which has a disordered aldehyde group [the disorder ratio is 0.769 (4):0.231 (4)]. In each molecule, the six‐membered rings have chair conformations, whereas the cyclopentane ring in each molecule adopts an envelope conformation. All the rings in the lupane nucleus are trans‐fused. The extended structures of both polymorphs are stabilized by weak intermolecular C—H...O and van der Waals interactions. Weak intramolecular C—H...O interactions are also observed.  相似文献   

13.
A second, monoclinic, polymorph of the title compound, C14H8Cl2, has been found. In addition to the structure of this monoclinic form, the structure of the previously described orthorhombic form [Desvergne, Chekpo & Bouas‐Laurent (1978). J. Chem. Soc. Perkin Trans. 2, pp. 84–87; Benites, Maverick & Fronczek (1996). Acta Cryst. C 52 , 647–648] has been redetermined at low temperature and using modern methods. The low‐temperature structure of the orthorhombic form is of significantly higher quality than the previously published structure and additional details can be derived. A comparison of the crystal packing of the two forms with a focus on weak intermolecular C—H...Cl interactions shows the monoclinic structure to have one such interaction linking the molecules into infinite ribbons, while two crystallographically independent C—H...Cl interactions give rise to an interesting infinite three‐dimensional network in the orthorhombic crystal form.  相似文献   

14.
Thalassemia is a genetic blood disorder requiring life‐long blood transfusions. This process often results in iron overload and can be treated by an iron‐chelating agent, like deferiprone (3‐hydroxy‐1,2‐dimethylpyridin‐4‐one), C7H9NO2, in an oral formulation. The first crystal structure of deferiprone, (Ia), was reported in 1988 [Nelson et al. (1988). Can. J. Chem. 66 , 123–131]. In the present study, two novel polymorphic forms, (Ib) and (Ic), of deferiprone were identified concomitantly with polymorph (Ia) during the crystallization experiments. Polymorph (Ia) was redetermined at low temperature for comparison of the structural features and lattice energy values with polymorphs (Ib) and (Ic). Polymorph (Ia) crystallized in the orthorhombic space group Pbca, whereas both polymorphs (Ib) and (Ic) crystallized in the monoclinic space group P21/c. The asymmetric units of (Ia) and (Ib) contain one deferiprone molecule, while polymorph (Ic) has three crystallographically independent molecules (A, B and C). All three polymorphs have similar hydrogen‐bonding features, such as an R22(10) dimer formed by O—H…O hydrogen bonds, an R43(20) tetramer formed by C—H…O hydrogen bonds and π–π interactions, but the polymorphs differ in their molecular arrangements in the solid state and are classified as packing polymorphs. O—H…O and C—H…O hydrogen bonds lead to the formation of two‐dimensional hydrogen‐bonded parallel sheets which are interlinked by π–π stacking interactions. In the three‐dimensional crystal packing, the deferiprone molecules were aggregated as corrugated sheets in polymorphs (Ia) and (Ic), whereas in polymorph (Ib), they were aggregated as a square‐grid network. The characteristic crystalline peaks of polymorphs (Ia), (Ib) and (Ic) were established through powder X‐ray diffraction analysis. The Rietveld analysis was also performed to estimate the contribution of the polymorphs to the bulk material.  相似文献   

15.
The crystal and molecular structures of four stereoisomers of tapentadol hydrochloride [systematic name: 3‐(3‐hydroxyphenyl)‐N,N,2‐trimethylpentan‐1‐aminium chloride], C14H24NO+·Cl, a novel analgesic agent, have been determined by X‐ray crystal structure analysis. Resolution of the isomers was carried out by reverse‐phase and chiral high‐performance liquid chromatographic (HPLC) methods. Stereoisomers (I) and (II) crystallize in the monoclinic space group P21, each with two tapentadol cations and two chloride anions in the asymmetric unit, while stereoisomers (III) and (IV) crystallize in the orthorhombic space group P212121, with one tapentadol cation and one chloride anion in the asymmetric unit. The absolute configurations of the four enantiomers were determined unambiguously by X‐ray crystallography. The crystal structures reveal the stereochemistries at the 3‐ethyl and 2‐methyl groups to be R,R, S,S, S,R and R,S in stereoisomers (I)–(IV), respectively. The ethyl and aminopropyl groups adopt different orientations with respect to the phenol ring for (I) and (IV). In all four structures, the chloride ions take part in N—H...Cl and O—H...Cl hydrogen bonds with the tapentadol molecules, resulting in one‐dimensional helical chains in the crystal packing in each case.  相似文献   

16.
Details of the structures of two polymorphs of tris(ethylenediamine)cobalt(III) tetrathioantimonate(V), [Co(C2H8N2)3][SbS4], are reported. The first polymorph crystallizes in the orthorhombic space group Pna21, whereas the second polymorph belongs to the tetragonal space group P42bc. Both structures contain octahedral [Co(en)3]3+ cations (en is ethylenediamine) and tetrahedral [SbS4]3− anions, which are interconnected via various N—H...S hydrogen bonds to form two different types of three‐dimensional network.  相似文献   

17.
The title compound, C4H6N4O·H2O, crystallized simultaneously as a triclinic and a monoclinic polymorph from an aqueous solution of 2,4‐diaminopyrimidin‐6‐ol. Previously, an orthorhombic polymorph was isolated under the same experimental conditions. The molecular geometric parameters in the two present polymorphs and the previously reported orthorhombic polymorph are similar, but the structures differ in the details of their crystal packing. In the triclinic system, the diaminopyrimidinone molecules are connected to one another via N—H...O and N—H...N hydrogen bonding to form infinite chains in the [011] direction. The chains are further hydrogen bonded to the water molecules, resulting in a three‐dimensional network. In the monoclinic system, the diaminopyrimidinone molecules are hydrogen bonded together into two‐dimensional networks parallel to the bc plane. The water molecules link the planes to form a three‐dimensional polymeric structure.  相似文献   

18.
Five distinct strong hydrogen‐bonding interactions of four kinds (N—H...Cl, N—H...O, O—H...N, and O—H...Cl) connect molecules of the title compound, C9H18N3+·Cl·H2O, in the crystal structure into corrugated sheets stacked along the a axis. The intermolecular interactions are efficiently described in terms of the first‐ through fifth‐level graph sets. A two‐dimensional constructor graph helps visualize the supramolecular assembly.  相似文献   

19.
The structures of two distinct polymorphic forms of N‐(2,6‐difluorophenyl)formamide, C7H5F2NO, have been studied using single crystals obtained under different crystallizing conditions. The two forms crystallize in different space groups, viz. form (Ia) in the orthorhombic Pbca and form (Ib) in the monoclinic P21 space group. Each polymorph crystallizes with one complete molecule in the asymmetric unit and they have a similar molecular geometry, showing a trans conformation with the formamide group being out of the plane of the aromatic ring. The packing arrangements of the two polymorphs are quite different, with form (Ia) having molecules that are stacked in an alternating arrangement, linked into chains of N—H...O hydrogen bonds along the crystallographic a direction, while form (Ib) has its N—H...O hydrogen‐bonded molecules stacked in a linear fashion. A theoretical study of the two structures allows information to be gained regarding other contributing interactions, such as π–π and weak C—H...F, in their crystal structures.  相似文献   

20.
In the structures of the two enantiopure diastereoisomers of the title compound, C20H18ClN3O, which crystallize in different space groups, the molecules are very similar as far as bond distances and angles are concerned, but more substantial differences are observed in some torsion angles. The crystal structures of both molecules can be described as zigzag layers along the c axis. The packing is stabilized by hydrogen‐bond interactions of N—H...O, C—H...Cl and C—H...π types for 2‐[(R)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, and of N—H...N, C—H...O and C—H...π types for 2‐[(S)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, resulting in the formation of two‐ and three‐dimensional networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号